
Learning models for

intelligent photo editing

Garoe Dorta

A thesis submitted for the degree of Doctor of Engineering

University of Bath

Department of Computer Science

August 2019

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with the author and

copyright of any previously published materials included may rest with third parties.

A copy of this thesis has been supplied on condition that anyone who consults it

understands that they must not copy it or use material from it except as licenced,

permitted by law or with the consent of the author or other copyright owners, as

applicable.

This thesis may be made available for consultation within the University Library and

may be photocopied or lent to other libraries for the purposes of consultation.

Signature of Author .

Garoe Dorta

Abstract

This thesis addresses the task of photo-realistic semantic image editing, where the goal

is to provide intuitive controls to modify the content of an image, such that the result

is indistinguishable from a real image. In particular the focus is on editing applied to

human faces, although, the proposed models can be readily applied to other type of

images. We build on recently proposed deep generative models, which allow learning

the image editing operations from data. However, there are a number of limitations in

these models, two of which are explored in this thesis: the difficulty of modelling high-

frequency image details, and the inability to edit images at arbitrarily high resolutions.

The difficulty of modelling high-frequency image details is typical of methods with ex-

plicit likelihoods. This work presents a novel approach to overcome this problem. This

is achieved by surpassing the common assumption that the pixels in the image noise

distribution are independent. In most scenarios, breaking away from this independence

assumption leads to a significant increase in computational costs. Additionally, it in-

troduces issues in the estimability of the distribution due to the considerable increment

in the number of parameters to be estimated. To overcome these obstacles, we present

a tractable approach for a correlated multivariate Gaussian data likelihood, based on

sparse inverse covariance matrices. This approach is demonstrated on variational au-

toencoder (VAE) networks.

An approach to perform image edits using generative adversarial networks (GAN) at

arbitrarily high-resolutions is also proposed. The method relies on restricting the types

of edits to smooth warps, i.e. geometric deformations of the input image. These warps

can be efficiently learned and predicted at a lower resolution, and easily upsampled to

be applied at arbitrary resolutions with minimal loss of fidelity. Moreover, paired data

is not needed for training the method, i.e. example images of the same subject with

different semantic attributes. The model offers several advantages with respect to pre-

vious approaches that directly predict the pixel values: the edits are more interpretable,

the image content is better preserved, and partial edits can be easily applied.

1

Acknowledgements

I would like to thank my many supervisors for their unwavering support, advice and

patience. Neill Campbell and Ivor Simpson for never failing to produce a plethora of

amazing research ideas. They were patient enough to explain to me all the intricacies

of the Bayesian approach, and for emphasising that I should never lose sight of it in

this deep learning era. Sara Vicente for being the voice of reason, especially for her

help in focussing on the ideas that were more promising, and providing priceless insight

into the theoretical and practical problems that came along. Lourdes Agapito for her

valuable help, though unfortunately, not for the whole duration on the EngD.

I would like to thank my unofficial supervisors at Anthropics Technology Ltd., Simon

Prince for his inestimable wisdom regardless of the topic, and Tony Polichroniadis for

his involvement in many discussions.

I would like to thank my former supervisor, Yong-Liang Yang for being able to trans-

form my problematic first year of the EngD into a useful learning experience.

Many friends and colleagues made these years far more enjoyable that what it would

have been without them. Including all the people that I crossed paths with at the

University of Bath, University College London and Anthropics Technology Ltd. In

particular, I would like to thank Ieva Kazlauskaite, a treasured friend, for being there

to discuss research, helping with proof-reading and taking part in fun activities outside

of research.

No less important is the financial support provided by Anthropics Technology Ltd.,

and similarly by the Engineering and Physical Sciences Research Council, with grant

EP/L016540/1.

Finally, I wish to thank my parents and sister for their steadfast encouragement, care,

understanding and support.

2

Contents

1 Introduction 13

1.1 Variational Autoencoders (VAE) . 18

1.2 Generative Adversarial Networks (GAN) 20

1.3 Evaluation . 24

1.4 Publications . 26

1.5 Thesis outline . 27

2 Background 28

2.1 Machine learning . 29

2.2 Deep learning . 31

2.3 Deep generative models . 33

2.4 Variational Autoencoders (VAE) . 35

2.4.1 Approximate posterior regularisation 39

2.4.2 Complex approximate posterior 40

2.4.3 Complex likelihood . 42

2.5 Generative Adversarial Networks (GAN) 45

2.5.1 Stability . 48

2.5.2 Mode collapse . 50

2.5.3 Inference . 52

2.5.4 Evaluation . 53

2.6 Image-to-Image translation . 54

2.7 Face image editing . 56

3 Structured uncertainty 64

3.1 Introduction . 64

3.1.1 Motivation . 64

3.1.2 Proposed solution . 66

3.2 Previous work . 67

3

3.2.1 Structured uncertainty prediction 68

3.3 Methodology . 69

3.3.1 Covariance estimation considerations 71

3.3.2 Precision matrix parametrisations 72

3.3.3 Sparse Cholesky Decomposition 76

3.3.4 Efficiency . 81

3.3.5 Priors . 85

3.3.6 Regularised precision matrix estimation 92

3.4 Results . 95

3.4.1 Implementation details . 95

3.4.2 Synthetic datasets . 96

3.4.3 Ablation studies . 101

3.4.4 Comparison to previous work . 107

3.4.5 Model insights . 111

3.4.6 Application: denoising . 116

3.5 Discussion . 118

4 Warping GAN 120

4.1 Introduction . 120

4.1.1 Motivation . 120

4.1.2 Proposed solution . 122

4.2 Previous work . 124

4.2.1 StarGAN . 124

4.2.2 Methods for high resolution . 124

4.3 Methodology . 129

4.3.1 Warp Parametrisations . 129

4.3.2 Learning . 131

4.3.3 Signed labels . 132

4.3.4 Inference . 134

4.4 Results . 136

4.4.1 Datasets . 136

4.4.2 Models . 138

4.4.3 Implementation details . 139

4.4.4 Quantitative metrics . 140

4.4.5 Ablation study . 141

4.4.6 Quantitative results . 144

4.4.7 Qualitative results . 148

4

4.5 Discussion . 153

5 Conclusions 156

5.1 Summary of contributions . 156

5.1.1 Structured uncertainty prediction 156

5.1.2 WarpGAN . 157

5.2 Limitations and future work . 158

5.2.1 Variational Autoencoders (VAE) 158

5.2.2 Unpaired image-to-image translation models 159

5.3 Final conclusions . 161

Appendix A Structured uncertainty 183

A.1 Proofs and derivations . 183

A.1.1 Gaussian Markov Random Fields 183

A.1.2 Directly modelling the Cholesky decomposition of the covariance

matrix . 185

A.1.3 Example of operator s(·) . 186

A.1.4 Example of operator g(I) . 187

A.1.5 Sampling from a multivariate Gaussian distribution 188

A.1.6 Equivalence between Cholesky-Wishart and Gamma-Gaussian dis-

tributions . 189

A.1.7 Derivation of square root Gamma distribution 190

A.1.8 Scaled Gaussian and square root Gamma variables 191

A.1.9 Cholesky-Wishart distribution 192

A.1.10 Mode of the sparse Cholesky-Wishart distribution 196

A.2 Network architectures . 199

A.2.1 IPE models . 199

A.2.2 SDR models . 202

A.3 Additional qualitative results . 204

A.3.1 Ablation studies . 204

A.3.2 Comparison to previous work . 206

A.3.3 Application: denoising . 214

Appendix B WarpGAN 215

B.1 Network architectures . 215

B.2 Extended quantitative results . 217

B.3 Additional qualitative results . 219

5

List of Figures

1-1 Example image editing methods. 14

1-2 Semantic image editing with PortraitPro c© 15

1-3 Example edits with neural photo editing [Brock et al., 2017] 17

1-4 Samples from a VAE model [Rezende et al., 2014, Kingma and Welling,

2014] and from the model presented in Chapter 3 19

1-5 Example edits with StarGAN [Choi et al., 2018], FaceShop [Portenier

et al., 2018] and Contour2im [Dekel et al., 2018] models 21

1-6 Example edits with Cycle-GAN [Zhu et al., 2017] 22

1-7 Image editing with a StarGAN [Choi et al., 2018] model and with the

model presented in Chapter 4 . 23

2-1 Overview of deep generative learning models 33

2-2 Diagram of a Variational Autoencoder (VAE) [Rezende et al., 2014,

Kingma and Welling, 2014] . 37

2-3 Samples from VAE model on the CelebA dataset 38

2-4 Approximate posterior distributions for a VAE with a 2D latent space . 41

2-5 Reconstructions and samples for a PixelVAE [Gulrajani et al., 2017b]

model on the CelebA dataset . 43

2-6 Diagram of a Generative Adversarial Network (GAN) [Goodfellow et al.,

2014] . 45

2-7 Example images generated by a GAN model 46

2-8 Example of vanishing gradients in a GAN model 48

2-9 Example of mode collapse in a GAN model 50

2-10 Example images from an IntroVAE [Huang et al., 2018] model on the

CelebA dataset . 52

2-11 Overview of the StarGAN [Choi et al., 2018] model 55

2-12 Example of image editing with a linear subspace model [Nguyen et al.,

2008] . 57

6

2-13 Image editing with an exemplar-based approach [Guo and Sim, 2009] . . 59

2-14 Example of expression transfer using Warp-Guided GAN [Geng et al.,

2018] model . 61

3-1 Example images from a diagonal Gaussian VAE and structured Gaussian

VAE . 65

3-2 Uncertainty prediction in encoder-decoder models for semantic segmen-

tation [Kendall and Gal, 2017] . 69

3-3 Example of the sparsity patterns used in the sparse Cholesky decompo-

sition parametrisation . 76

3-4 Demonstration of long correlations being modelled by a sparse precision

matrix . 77

3-5 Example of the dilated sparsity patterns for the sparse Cholesky decom-

position parametrisation . 78

3-6 Input, reconstructions and residuals in RGB and YCbCr colour spaces

for a VAE with diagonal covariance trained with RGB images. 82

3-7 Tractable GPU evaluation of r
T
Λr with dense matrixes B and W. . . . 84

3-8 Reconstruction example from a VAE with a structured likelihood that

was trained without any regularisation. 86

3-9 Structured uncertainty prediction in two steps 93

3-10 Structured uncertainty prediction with shared features on the decoder . 94

3-11 Overview of the splines dataset . 97

3-12 Reconstructions from the splines dataset 98

3-13 Estimated covariance matrices for the spline dataset 99

3-14 Reconstruction on the ellipses dataset 100

3-15 Covariance matrices estimated on the ellipses dataset 101

3-16 Reconstructions for VAEs trained on RGB images and on YCbCr images

on the CelebA dataset . 104

3-17 Image reconstructions of VAE (Σ), VAE (Σ-Ga
1
2N), VAE (Σ-W c

sp) and

VAE (SDR) on the CelebA dataset . 106

3-18 Image samples of VAE (Σ), VAE (Σ-Ga
1
2N), VAE (Σ-W c

sp) and VAE

(SDR) on the CelebA dataset . 107

3-19 Image reconstructions of VAE (Sph), VAE (Diag), β-VAE (Diag) and

VAE (SDR) on the CelebA dataset . 109

3-20 Image samples of VAE (Sph), VAE (Diag), β-VAE (Diag) and VAE

(SDR) on the CelebA dataset . 110

7

3-21 Image reconstructions of VAE (Sph), VAE (Diag), β-VAE (Diag) and

VAE (SDR) on the LSUN dataset . 111

3-22 Image samples of VAE (Sph), VAE (Diag), β-VAE (Diag) and VAE

(SDR) on the LSUN dataset . 112

3-23 Residual variability for VAE (SDR) on the CelebA dataset 112

3-24 Samples drawn from VAE (SDR) while interpolating on the latent space

on the CelebA dataset . 113

3-25 Variance maps for VAE (Diag) and VAE (SDR) on the CelebA dataset . 114

3-26 Image reconstructions for AE, AE (IPE), VAE (Diag), and VAE (IPE)

on the CelebA dataset . 115

3-27 Overview of the proposed denoising technique with our covariance pre-

diction network . 116

3-28 Denoising experiment with a VAE (IPE) on the CelebA dataset 118

4-1 Example of partial edits on the GANimation [Pumarola et al., 2018] model121

4-2 Example of expression editing with ratio images model [Liu et al., 2001] 122

4-3 Overview of the WarpGAN+ model . 129

4-4 Example of face landmark locations . 130

4-5 Use of binary attribute labels in a StarGAN model during training . . . 133

4-6 Use of signed attribute labels in a StarGAN model during training . . . 134

4-7 Overview of inference at arbitrary resolutions with the WarpGAN+ model135

4-8 Examples of the train images found on the CelebA dataset. 137

4-9 Examples of the train images found on the RafD dataset 138

4-10 Example of employing a dense flow method [Zach et al., 2007, Sánchez Pérez

et al., 2013] to transfer an edit from StarGAN [Choi et al., 2018] model 139

4-11 Qualiative results for an ablation study of WarpGAN+ 142

4-12 Graph with presence of the edited attribute versus face re-identification

score for ablation of the WarpGAN+ model 143

4-13 Quantitative comparison of the pixel-based cycle loss and the warp-based

cycle loss in a WarpGAN+ model in terms of smoothness and mean

displacement of the warp fields. 144

4-14 Graph with presence of the edited attribute versus face re-identification

score for StarGAN, StarGAN+ and WarpGAN+ 145

4-15 Graph with presence of the edited attribute versus face perceptual real-

ism score for StarGAN, StarGAN+ and WarpGAN+ 146

4-16 Graph with presence of the edited attribute versus face re-identification

score for alpha scaling in the WarpGAN+ model 147

8

4-17 Editing examples of StarGAN [Choi et al., 2018], StarGAN+ and Warp-

GAN+ in the CelebA dataset . 149

4-18 Editing examples of StarGAN [Choi et al., 2018] and WarpGAN in the

RafD dataset . 150

4-19 Editing examples of WarpGAN+ for high resolution images 151

4-20 Partial edits for WarpGAN+ model on the CelebA dataset 151

4-21 Composition of edits for StarGAN and WarpGAN+ on the CelebA dataset152

4-22 Stretch maps computed from the warp fields, for both WarpGAN and

WarpGAN+ on the CelebA dataset . 153

4-23 Preliminary results of WarpGAN on the Cub200 dataset 154

A-1 L-Decoder network architecture for the splines dataset. 199

A-2 L-Decoder network architecture for the ellipses dataset. 199

A-3 VAE architecture for the grey-scale CelebA dataset. 200

A-4 L-Decoder network architecture for the grey-scale CelebA dataset. . . . 201

A-5 Common network architecture for all VAE (SDR) the models 202

A-6 Covariance prediction branch for the Y channel in VAE (SDR) 203

A-7 Diagonal covariance prediction branch for the Y channel in a VAE. . . . 203

A-8 Spherical covariance prediction branch for the Y channel in a VAE . . . 203

A-9 Spherical covariance prediction branch for the Cb and Cr channels in a

VAE . 203

A-10 Image reconstructions of VAE (Σ), VAE (Σ-Ga
1
2N) and VAE (Σ-W c

sp)

on the CelebA dataset . 204

A-11 Image samples of VAE (Σ), VAE (Σ-Ga
1
2N) and VAE (Σ-W c

sp) on the

CelebA dataset . 205

A-12 Image reconstructions of VAE (Sph), VAE (Diag), β-VAE (Diag) and

VAE (SDR) on the CelebA dataset . 206

A-13 Image samples of VAE (Sph), VAE (Diag), β-VAE (Diag) and VAE

(SDR) on the CelebA dataset . 207

A-14 Image reconstructions of VAE (Sph), VAE (Diag), β-VAE (Diag) and

VAE (SDR) on the LSUN dataset . 208

A-15 Image samples of VAE (Sph), VAE (Diag), β-VAE (Diag) and VAE

(SDR) on the LSUN dataset . 209

A-16 Residual variability for VAE (SDR) on the CelebA dataset 210

A-17 Samples drawn from VAE (SDR) while interpolating on the latent space

on the CelebA dataset . 211

A-18 Variance maps for VAE (Diag) and VAE (SDR) on the CelebA dataset . 212

9

A-19 Image reconstructions for AE, AE (IPE), VAE (Diag) and VAE (IPE)

on the CelebA dataset . 213

A-20 Denoising experiment with a VAE (IPE) on the CelebA dataset 214

B-1 Additional edits for StarGAN, StarGAN+ andWarpGAN+ on the CelebA

dataset . 219

B-2 Additional edits for StarGAN and WarpGAN on the RafD dataset . . . 220

B-3 Additional high-resolution edits for WarpGAN+ 221

B-4 Additional partial edits of WarpGAN+ on the CelebA dataset 222

B-5 Additional stretch maps computed from the warp fields, for both Warp-

GAN and WarpGAN+ on the CelebA dataset 223

B-6 Preliminary results of WarpGAN on the Cub200 dataset 224

10

List of Tables

2.1 Overview over different choices of the regularisation functions for the

approximate posterior R1(qφ(z|x)) and the aggregated approximate pos-

terior R2(qφ(z)) of a VAE . 40

3.1 Quantitative comparison of reconstructions on the splines dataset 99

3.2 Quantitative comparison on the ellipses dataset 101

3.3 Quantitative comparison of VAE (IPE) and VAE (SDR) on the CelebA

dataset . 104

3.4 Quantitaive comparison of VAE (Σ), VAE (Σ-Ga
1
2N), VAE (Σ-W c

sp)

and VAE (SDR) on the CelebA dataset 105

3.5 Quantitative comparison of VAE (Sph), VAE (Diag), β-VAE (Diag),

VAE (IPE) and VAE (SDR) on the CelebA dataset 108

3.6 Quantitative comparison of VAE (Sph), VAE (Diag), β-VAE (Diag) and

VAE (SDR) on the LSUN dataset . 110

3.7 Quantitative comparison of VAE (Diag) and VAE (IPE) on the CelebA

dataset . 116

3.8 Quantitative comparison for denoising experiment 117

4.1 Comparison of characteristics of WarpGAN+ versus previous work . . . 125

4.2 Comparison of model efficiency for StarGAN and WarpGAN for different

image sizes . 148

B.1 Architecture for the discriminator and the classifier networks, D and C

in WarpGAN and WarpGAN+ models 215

B.2 Architecture for the warping network W in WarpGAN and WarpGAN+

models . 216

B.3 Identity score per attribute for StarGAN, StarGAN+ and WarpGAN+ . 217

B.4 Attribute classification accuracy for StarGAN, StarGAN+ and Warp-

GAN+ . 217

11

B.5 Attribute classification accuracy, according to the user study, for Star-

GAN, StarGAN+ and WarpGAN+ . 218

B.6 Perceptual realism per attribute, according to the user study, for Star-

GAN, StarGAN+ and WarpGAN+ . 218

12

Chapter 1

Introduction

Image editing for photo enhancement is ubiquitous in modern society, where millions of

images are uploaded per day to social media services such as Snapchat c©, Instagram c©

or Facebook c© [Smith, 2013]. The majority of image editing methods generally seek

to modify the content of an input image such that the manipulated image is indistin-

guishable from a natural unedited image. Modifying an image to the point where it

becomes obvious that is has been edited commonly leads to harsh public scrutiny, as

demonstrated by any internet search with terms such as “Photoshop fails”.

There are a number of reasons why it might be interesting to perform edits on an

image. For example, inpainting techniques seek to fill in a missing region, which has

applications in removing unwanted objects [Criminisi et al., 2004] or restoring damaged

photographs [Bertalmio et al., 2000], as shown in Fig. 1-1, left. Image defocusing [Bar-

ron et al., 2015] allows obtaining shallow-depth-of-field images, that traditionally re-

quire using expensive DSLR cameras, from all-in-focus images obtained by affordable

cellphone cameras, as shown in Fig. 1-1, right. Image denoising [Vincent et al., 2008]

seeks to remove noise from an image, where the noise is usually introduced by the

sensors that captured the image. Semantic editing [Blanz and Vetter, 1999] modifies

an image according to a high-level semantic concept, such as changing the expression

of a face in an image. This type of editing will be discussed in more detail below.

Image editing applied to human faces has a long history in computer vision [Beier and

Neely, 1992, Blanz and Vetter, 1999, Liu et al., 2001, Mohammed et al., 2009] and

has been made increasingly relevant with the rise in the number of pictures people

take of others or themselves. For instance, 350 million photos per day were uploaded

to Facebook c© as of 2013 [Smith, 2013]. This thesis treats editing human faces as an

13

Image inpainting [Bertalmio et al., 2000] Bilateral defocus [Barron et al., 2015]

Input Restored Input Defocused

Figure 1-1: Example of image editing methods. An image inpainting method [Bertalmio
et al., 2000] can be used to restore old photographs that have been damaged. A shallow-
depth-of-field effect can be added to an all-in-focus image [Barron et al., 2015].1

example application, however the presented models can be readily applied to other data

types and examples for non-face images can be found in Chapters 3 and 4.

The most näıve approach to editing would involve letting the user directly modify the

pixel values in the image. However, this is extremely time consuming and it typically

generates unrealistic images, as it is very easy to diverge from the manifold of real

images using this approach [Zhu et al., 2016]. Higher level tools are also available,

which allow editing groups of pixels. For example the liquify filter is used to deform a

user-defined region in the image, and it can be found in most editing software. Still,

employing these type of tools is time consuming and it requires a high level of expertise

to produce good quality edits. Face editing is particularly demanding since humans

can easily detect minor defects in other human faces [Mori et al., 2012], which adds

extra challenges to research in this area. Any minor error produced during the editing

operation could lead to an image that would not be considered realistic.

This research has been partly funded by Anthropics Technology Ltd. c©, which produces

intelligent image editing software, with a focus on human faces. The types of edits

available in this software are of a semantic nature, as demonstrated by the example

shown in Fig. 1-2. In contrast to low-level operations, these are high-level operations

with an adaptive spatial scale, which depends on the particular edit. This leads to

faster editing and makes the system more user-friendly, especially for novice users. In

the example shown in Fig. 1-2, the user edits the input image by using a single slider

that controls the smoothness of the skin in the face. Previously, users would require

more technical skills and the use of general purpose tools on other professional editing

software like Photoshop c© to be able to achieve good quality editing. In contrast,

Anthropics’ software focuses on semantic editing with sliders to control the magnitude

1Images courtesy of [Bertalmio et al., 2000] and [Barron et al., 2015].

14

Figure 1-2: Semantic image editing with PortraitPro c©, where the user adjusts a single
slider corresponding to the “skin smoothing” attribute to manipulate the image.2

of the effect. In addition to the semantic edits, the software is able to generate photo-

realistic results at interactive speeds without restrictions on the resolution of the input

image. Furthermore, the identity of the subject in the picture is preserved after the edit,

i.e. modifying the image to an extent where the subject can no longer be recognised

is undesirable. Thus, these properties will be the guiding factors for the techniques

explored in this thesis.

Anthropics Technology Ltd. c© also develops editing tools for images containing human

bodies, PortraitPro Body c©, and for outdoor landscape images, LandscapePro c©. The

approach of editing via intuitive, high level semantic controls is shared by all of these.

For example, PortraitPro Body c© includes tools to easily modify the shape of different

parts of the body, while LandscapePro c© contains methods for manipulating the ap-

pearance of the sky, as well as other semantic parts of the image. The key idea for each

piece of software is to employ domain specific knowledge in order to be able to imple-

ment the tools. For example, in PortraitPro c© the skin must be detected automatically,

as it is needed for a fully automated skin smoothing tool.

An important limitation in most of these tools is that even though the computer vision

part of the process is automated, e.g . the skin detection for PortraitPro c© or sky seg-

mentation in LandscapePro c©, most of the computer graphics parts are not. In other

words, most of the transformations that are applied to the image are hand-designed.

2Image courtesy of Anthropics Technology Ltd. c©

15

This requires a significant amount of work for the implementation of new edits, as

these transformations are not trivial. A particular aspect that makes the design of

these transformations cumbersome is that they must guarantee that the resulting im-

age remains realistic and achieves the target edit. Moreover, careful consideration of

the edge cases is required, such as extreme face poses, as these hand-designed edits

might not work as well in those settings.

In this thesis we explore ways to automate the creation of new semantic edits. The

approach that we follow is learning how to perform these transformations from data, as

this allows us to rely less on designing complex algorithms and more on using labelled

data. Unfortunately, there are number of issues that make this task non-trivial:

(i) There is the curse of dimensionality, images are high-dimensional mathematical

objects, where each pixel is a three-dimensional vector containing the colour at

that location in the image. Doubling the resolution of an image, leads to a

quadratic increase in the number of pixels. Yet, the editing tools must operate

at the original image resolution.

(ii) For most interesting image transformations data labelling is a process that is

costly, noisy and ambiguous. For example, if we were to design a machine learning

method to replicate the work of experts in Photoshop c©, we would normally need

a dataset of edited images, which is costly, as each expert would take a significant

amount of time to edit each image. The data would be noisy, as some of them

might make mistakes. Moreover, the results would be ambiguous, as even when

aiming to achieve the same effect, each expert would edit the same image in a

different manner.

(iii) The problem is non-linear in pixel space, as these transformations are of seman-

tic nature. Therefore, learning them is by definition a non-trivial task.

(iv) In order to learn these image transformations, a common approach is to employ

a generative model that captures the distribution of natural images. However,

this requires unreasonable amounts of data, model complexity and computational

resources. Approximations in the model may induce a lack of representation

power, for example leading to the generation of blurry results.

In recent years, a number of academic methods have shown promise in learning these

type of transformations from image data [Brock et al., 2017, Zhu et al., 2016, Yan

et al., 2016], as shown in Fig. 1-3. These methods usually learn a low-dimensional

representation of the data, where semantic editing corresponds to manipulating this

16

Input Reconstruction Edited Difference
Final
edited

Figure 1-3: Example edits with neural photo editing [Brock et al., 2017]. The model
operates on low dimensional representations of images. The reconstruction is produced
by evaluating the low dimensional representation of the input image, and generating
an image from it. A modification of this representation leads to an edited image. The
difference between the input and the reconstruction is used to add some of the image
content that was lost in the reconstruction step, producing the final result.3

representation. Henceforth, we will use latent space to refer to the space where the

low-dimensional representations of the images live. Generally, semantic editing requires

complex non-linear image manipulations, while manipulating the low-dimensional rep-

resentation is frequently a simpler operation. Moreover, if there is a one-to-one mapping

between a semantic concept a specific dimension in the representation, each dimension

can correspond to a semantic slider in PortraitPro c©.

The aforementioned methods are based on deep learning, a machine learning approach

that employs neural networks, which will be discussed in more detail in Chapter 2. The

deep learning approach has not only become the standard in face editing, but also in

many other areas such as inpainting [Yang et al., 2017], super-resolution [Ledig et al.,

2017], semantic segmentation [Luc et al., 2016] and depth estimation [Godard et al.,

2017].

In particular, the image editing techniques mentioned above use deep generative mod-

els. For natural image data, these models seek to learn the distribution of natural

images given a set of example images, and in principle these example images are not

labelled. We only consider the subset of generative models that assume that the data

is explained by a latent space. This is a typical approach in machine learning methods,

that will be discussed in more detail in Section 2.1.

A key factor is that these models learn (or impose) some distribution on this low-

dimensional representation. This has two important consequences: firstly, the models

can be used to generate novel images by drawing samples from this distribution. Sec-

ondly, having some structure on the low-dimensional representation usually induces

3Images courtesy of [Brock et al., 2017].

17

some form of smoothness on the space, which is required to have smooth variations in

the image space when traversing the low-dimensional space. Therefore, image editing

can be performed in these models by finding out the location of the image in the latent

space, moving to a new location according to the desired edit, and projecting back to

the image space.

Two deep generative models are particularly popular: Generative Adversarial networks

(GAN) [Goodfellow et al., 2014] and Variational Autoencoders (VAE) [Rezende et al.,

2014, Kingma and Welling, 2014]. In relation to the editing techniques described above,

neural photo editing [Brock et al., 2017] and the work by Zhu et al . [Zhu et al., 2016]

employ GAN networks, while Attr2Img [Yan et al., 2016] uses a VAE.

Both, VAE and GAN will be explained in detail in Chapter 2. For now, we note

that GAN models are capable of generating realistic images, yet they lack an inference

method, i.e. they lack an encoder network to project an input image to the latent space.

On the contrary, VAE models are known for generating blurry images. However, they

have efficient inference and sampling mechanisms and hence may be more suitable for

image editing. Despite this, we will come back to discussing GAN models later in the

chapter.

1.1 Variational Autoencoders (VAE)

VAEs [Rezende et al., 2014, Kingma and Welling, 2014] consist of an encoder network

that transforms from the image space to the latent space, i.e. it finds a low-dimensional

representation of an input image, and a decoder network, which does the reverse pro-

cess, i.e. it generates an image given its low-dimensional representation. This model

has been used for a variety of applications, including predicting future frames from

video data [Walker et al., 2016], object pose estimation [Prokudin et al., 2018] and

semantic attribute editing on face images [Yan et al., 2016].

During training the model performs an autoencoding task, i.e. it finds the low dimen-

sional representation of an image using the encoder network, and it reconstructs the

image given this information using the decoder network. A probabilistic reconstruction

loss is used to evaluate how well the model is reconstructing the input images. The

residual image, ǫ = x − µ, gives the empirical error per pixel, and it is defined as the

image difference between the input, x, and the mean output, µ, of the decoder network.

The distribution of these residual images is modelled by the VAE as variance in the

predicted values, where this variance indicates how confident the model is about the

18

µ ǫ x = µ+ ǫ µ ǫ x = µ+ ǫ

V
A
E

O
u
rs

Figure 1-4: Samples from a VAE [Rezende et al., 2014, Kingma and Welling, 2014] and
from the model presented in Chapter 3. VAEs use a forward model for the data where
x = µ + ǫ, which correspond to a mean, µ, and a residual, ǫ. It can be seen how a
VAE generates noisy images, x, with blurry means, µ. Our model generates images,
x, with structured residuals, ǫ, that contain plausible high-frequency content.

predicted pixel values. In other words, the images are modelled as a mean component

and a residual component, x = µ + ǫ, as shown in Fig. 1-4. The estimated residual

component should be similar to the real residual. The images shown in the figure are

samples from the model, not reconstructions, thus, the real residual is unknown.

It is common practice to model the residual distribution of each pixel value as being

i.i.d. (independently and identically distributed), which is a simplifying approximation

of the type discussed in item (iv). In practice, the model is often uncertain about its

predictions for most data types, including images. High uncertainty results in high

levels of noise when sampling from the i.i.d. distribution, which in turn produces

unrealistic images, as shown in Fig. 1-4. For this reason, researchers tend to only

show the mean component [Larsen et al., 2016, Yan et al., 2016], rather than a true

sample from the model, which would include ǫ. Unfortunately, this severely limits the

applicability of the model for editing, as the output images are either blurry or noisy.

Hypothesis

We postulate that the real residuals in VAE models are highly structured, i.e. that

they are not independently and identically distributed, and reflect limitations in model

capacity. Additionally, we posit that these structured residual distributions can be

tractably learned by the model.

19

Proposed solution

We therefore propose to model the residual distribution using a Gaussian model with

dense covariance matrices to capture the pixel-wise correlations. This follows a similar

line of work as previous methods that employ more complex shapes for the data dis-

tribution in VAEs [Larsen et al., 2016, Gulrajani et al., 2017b, Hou et al., 2017]. Our

method allows the VAE model to generate images that contain realistic high-frequency

details, as shown in Fig. 1-4. In practice, this approach helps to reduce the errors due

to item (iv), as the approximation assumptions are relaxed. This is not an easy task, as

it implies that the model must estimate a full covariance matrix from a single sample.

Our tractable method to predict structured uncertainty is discussed in Chapter 3.

1.2 Generative Adversarial Networks (GAN)

During the development of the aforementioned method, relevant extensions to GAN [Good-

fellow et al., 2014] models were being concurrently proposed. These models have be-

come increasingly relevant in computer vision tasks, including super-resolution [Ledig

et al., 2017], image inpainting [Yang et al., 2017], face editing [Portenier et al., 2018, Shu

et al., 2017, Geng et al., 2018] and semantic segmentation [Luc et al., 2016].

GANs also contain a decoder network, which is known as a generator network, that

transforms a low-dimensional vector into an image. However, instead of training by

performing reconstructions, GAN models employ an alternative approach. An auxiliary

discriminator network is concurrently trained to evaluate if an image comes from the

real data distribution, or if it was produced by the generator. Meanwhile, the generator

tries to fool the discriminator into classifying its images as belonging to the real data

distribution.

Contrary to VAEs, GANmodels are able to produce images with realistic high-frequency

details. However, GANs doe not provide any inference method to recover the cor-

responding low-dimensional representation of an input image. A number of meth-

ods [Odena et al., 2017, Dumoulin et al., 2017, Donahue et al., 2017, Huang et al.,

2018] have been explored to address this issue, which will be discussed in Section 2.5.3.

However, a reconstruction from one of these GAN-based methods, despite containing

high frequency details and being realistic, will rarely correspond to the input image,

limiting their direct use as an image editing method.

Regardless of this limitation, state-of-the-art methods now commonly use adversarial

20

StarGAN [Choi et al., 2018] FaceShop [Portenier et al., 2018] Contour2im [Dekel et al., 2018]

Input
Blond
hair

Input Sketch Edited Input
Edited
contours

Edited

Figure 1-5: Example edits with several state of the art methods that use adversarial
losses. StarGAN [Choi et al., 2018] takes an input image and generates an edited
result based on a binary attribute; in this example the attribute indicates the presence
of “blond hair”. FaceShop [Portenier et al., 2018] edits the image by inpainting a region
and using a sketch as guidance; in this example changing the shape of the nose and
unoccluding the eye. Contour2im [Dekel et al., 2018] edits the image by manipulating
a set of contours; in this case the green contours have been moved and scaled.4

losses to ensure that the generated images are realistic [Choi et al., 2018, Portenier

et al., 2018, Dekel et al., 2018], as shown in Fig. 1-5. For example, StarGAN [Choi

et al., 2018] edits an image by changing binary semantic attribute labels, such as blond

hair to brunette hair. FaceShop [Portenier et al., 2018] allows editing by drawing rough

sketches, and Contour2im [Dekel et al., 2018] by scaling, translating or copying a set

of image contours. Hence, these models offer a wide variety of high level controls

to perform the editing operations. More importantly, they offer means to learn the

image transformations from data, which fits with our objective of developing automated

transformations for the semantic sliders. Of relevance to our objective of learning image

transformations from data are image-to-image translation methods [Isola et al., 2017],

and in particular extensions of the base model such as Cycle-GAN [Zhu et al., 2017]

and the aforementioned StarGAN model.

Cycle-GAN and StarGAN

Cycle-GAN [Zhu et al., 2017] demonstrated that image editing operations can be

learned from unpaired data. In the example shown in Fig. 1-6, Cycle-GAN learns

a horses to zebras transformation without paired data, i.e. without a real example of

how the horse in “Input A” would look if it were a zebra, and vice versa with zebras

to horses. A Cycle-GAN method cannot be used to sample novel images, neverthe-

less, it overcomes the aforementioned encoding issues typical of GAN-based methods.

Therefore, this is no longer a generative model, but a discriminative one, where the

input data are the original images, and the labels are the ground truth edited images.

4Images courtesy of [Choi et al., 2018], Portenier [Portenier et al., 2018] and [Dekel et al., 2018].

21

Input A A → B Input B B → A

Figure 1-6: Example edits with Cycle-GAN [Zhu et al., 2017]. The model learns how
to translate between domains A and B. In this case, domain A corresponds to images
of horses, and domain B to images of zebras. The model is trained without paired
data, i.e. a ground truth images for the A → B and the B → A transformations are
not required.5

However, as previously stated, ground truth edited images are not actually needed for

training this model. Moreover, being able to learn transformations without paired data

is useful, as collecting paired data is generally a costly process, as discussed in item (ii).

This approach fits better with our objective of learning automated transformations for

semantic sliders. However, Cycle-GAN models, and extensions such as StarGAN [Choi

et al., 2018], have a number of limitations. Firstly, these methods can only operate at

the same (or similar) resolution as the training data. Due to the data dimensionality

limitations discussed in item (i), the resolution of the training images is usually low,

which is problematic. An example is shown in Fig. 1-7, where the model learned

how to transform a face with a neutral expression to a face with a sad expression, as

well as the opposite transformation, which is not shown. The model produces good

quality edits for images at the same resolution as the training data, yet, it fails when the

resolution is increased. An obvious alternative is to downsample the input image to the

training data resolution. However, this would entail a significant loss of high frequency

detail when upsampling back to the original resolution, as observed by comparing the

StarGAN result at low resolution to the high resolution result of the method that

will be outlined below. This is a limitation that is also shared by most deep learning

methods. A second limitation is that due to the lack of paired data, these models tend

to inadvertently edit parts of the image that should have remained fixed. For example,

in Fig. 1-5, StarGAN not only makes the hair blonde but the skin lighter. Intuitively,

this can be understood by noticing that blond haired people frequently have lighter

skin tones, and the model is unable to decorrelate both characteristics during training.

5Images courtesy of [Zhu et al., 2017].

22

128× 128 540× 540

Input Sad Input Sad

S
ta
rG

A
N

O
u
rs

Figure 1-7: Image editing with a StarGAN [Choi et al., 2018] model and with the model
presented in Chapter 4. Both models attempt to transform the neutral expression into
a sad expression, and they are trained with images with a resolution of 128 × 128.
StarGAN fails when the resolution of the input image differs significantly (540× 540)
from the training data. Our model successfully transfers the edit at all resolutions.
(Zoom in for details)

Hypothesis

We postulate that a restricted set of semantic image transformations can be tractably

learned from unpaired data in an image-to-image translation model, such as StarGAN,

and used for editing at arbitrary resolutions.

Proposed solution

Inspired by previous methods learning from paired data [Yeh et al., 2016, Geng et al.,

2018, Ganin et al., 2016], we propose to learn warp fields (geometric deformations) for

semantic image editing in a StarGAN model, as show in Fig. 1-7. By being able to

operate at arbitrary resolutions this model addresses item (i) in the restricted case of

edits that only require geometric deformations. This approach also helps in reducing

the amount of content that is edited in the image that should have remained fixed, as it

is restricted to only model geometric deformations of the input image. Moreover, as the

method is an extension of Cycle-GAN methods, it retains the ability to be trained with

unpaired data. Our warping-based image-to-image translation method is presented in

Chapter 4.

23

1.3 Evaluation

An important question is how to evaluate the performance of the different models

presented in this thesis. Traditionally, in image editing applications a simple metric to

measure the performance is whether the model produced the target edited image. For

most edits this is very hard to evaluate quantitatively without resorting to user studies

as there are ambiguities for many types of edits, such as smiling, even with paired data.

Instead, the performance of the models on image editing will be measured under these

three aims

1. Did the method achieve the target edit?

2. Is the edited image realistic?

3. Is the method computationally efficient?

4. How complex is the method?

Ideally a representative set of users would be used to evaluate the first two by employ-

ing user studies, where the edited images from the different methods are compared.

Unfortunately, this is too expensive to be continuously used while developing the mod-

els. Therefore, automatic approximations to these metrics must be used in all other

cases. For the first, if labelled data is available, a classifier can be trained and used

to estimate the presence of a target edit, where the classifier will be a deep neural

network. Evaluating image realism is a more complex task, as realism is a subjective

metric, as it relies in its core on human perception. However, for human faces, part of

what makes an edit realistic is whether the subject identity is preserved after the edit.

Such identity scores are commonly used in face re-identification tasks [Schroff et al.,

2015], where a trained model outputs a score for any given pair of original and edited

images. Finally, we would prefer methods that are simple and efficient, rather than

employing models that are inefficient or complicated.

In summary, the following metrics will be reported for image editing methods

1. Quantitative metrics:

(a) the presence of the target attribute is evaluated both automatically with a

classification network, and ground truth values are reported by carrying out

user studies,

(b) user studies are carried out to asses the perceptual realism of the generated

24

images,

i. an identity score is reported to asses if the subject identity is preserved

on the manipulated image, which is measured by a face re-identification

network,

(c) the number of floating point operations required to edit an image is reported

as a measure of model efficiency,

(d) the number of learnable parameters is reported as an indicator of model

complexity,

2. Qualitative metrics:

(a) example edited produced by the models are shown for qualitative evalua-

tions.

We are also interested in evaluating purely unsupervised deep generative models, such

as VAEs, as they may be used for image editing. In a Bayesian framework, model eval-

uation follows Occam’s principle, the simplest model that explains the data is prefer-

able [MacKay, 1992]. This implies modelling the distribution of the model parameters,

as the model evidence is measured by marginalising over the distributions of model

parameters and the data distribution. Unfortunately, for most deep learning methods

evaluating the distribution over the model parameters given a dataset is not tractable.

Approximations which reduce the computational burden exist, such as the Bayesian

information criteria [Schwarz, 1978] and minimum description length approaches [Ris-

sanen, 1978]. Unfortunately, for implicit likelihood methods such as GAN [Goodfellow

et al., 2014], even computing the likelihood on test data is intractable. Thus, a combina-

tion of alternative tractable metrics is used to evaluate the generative models developed

in this thesis:

1. Quantitative metrics:

(a) when possible the likelihood on a test set is reported, where a higher likeli-

hood is usually indicative of the model better capturing the unknown real

data distribution,

(b) the number of learnable parameters is reported as an indicator of model

complexity,

2. Qualitative metrics:

25

(a) samples are drawn for generative models, and these are shown for qualitative

evaluations,

(b) latent space interpolations are shown for latent generative models, in order

to evaluate the quality of the latent space.

Despite the fact that these metrics are standard evaluation tools in the computer vision

research community [Rezende et al., 2014, Kingma and Welling, 2014, Burda et al.,

2016, Kingma et al., 2016, Goodfellow et al., 2014, Radford et al., 2016, Oord et al.,

2016], it is known that they have several flaws. For example, test likelihoods are a

popular metric for the evaluation of deep generative models. However, it has been

shown [Theis et al., 2016] that test likelihoods and the quality of the samples from

the model are largely independent of each other for high dimensional data such as

images. Moreover, the test likelihood for most deep learning models does not take into

account the complexity of the model. Measuring the quality of a latent space is also an

open problem. For most deep generative models the quality of the images generated

when traversing the latent space is defined subjectively as a perceptual metric, as

ground truth data only exists for trivial cases and synthetic scenarios [Lucic et al.,

2018, Higgins et al., 2017]. In conclusion, the evaluation of deep generative models is

still an open area of research.

1.4 Publications

The work in this thesis has been presented in the following conference papers:

Dorta, G., Vicente, S., Agapito, L., Campbell, N. D. F., and Simpson, I. (2018b).

Structured uncertainty prediction networks. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR)

Dorta, G., Vicente, S., Campbell, N. D. F., and Simpson, J. A. I. (2020). The GAN

that warped: Semantic attribute editing with unpaired data. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR)

patent (under review):

Dorta, G., Campbell, N. D. F., and Simpson, I. (2018a). Method of modifying digital

images. UK Patent, Application Number 1818759.1

26

and technical report:

Dorta, G., Vicente, S., Agapito, L., Campbell, N. D. F., and Simpson, I. (2018c). Train-

ing VAEs under structured residuals. arXiv preprint:1804.01050

1.5 Thesis outline

Chapter 2 describes deep generative models and relevant previous work on image

editing for faces. Both VAE [Rezende et al., 2014, Kingma and Welling, 2014] and

GAN [Goodfellow et al., 2014] models are described in detail, including limitations and

several extensions to both models.

Chapter 3 explores a tractable method to predict structured uncertainty. Previous

work on uncertainty prediction is discussed. Applications of the predicted uncertainty

distribution are shown, including editing by navigating the latent space and denoising.

Chapter 4 describes an image-to-image translation editing technique based on geo-

metric deformations (warping) of the input image. Existing methods for using deep

learning techniques at high image resolutions are discussed. Semantic image editing

results at arbitrary resolutions are shown, including partial edits.

Chapter 5 summarises the ideas presented in the thesis, draws conclusions and presents

potential future work.

27

Chapter 2

Background

In the previous chapter the advantages of learning image transformations from data

were stated in the context of developing semantic tools for image editing. Two latent

variable deep generative models were introduced as particularly relevant for the task:

Variational Autoencoders (VAE) [Rezende et al., 2014, Kingma and Welling, 2014]

and Generative Adversarial Networks (GAN) [Goodfellow et al., 2014]. Additionally,

Cycle-GAN [Zhu et al., 2016], a regression method that builds upon the GAN model

was also discussed.

In this chapter we discuss machine learning and the deep learning approach to machine

learning as prerequisites to understand the VAE, GAN and Cycle-GAN models. In

order to put in context VAEs and GANs, the whole family of deep generative models

is discussed. This highlights the advantages and disadvantages of both models, and

why those are particularly interesting for our purposes. We proceed by discussing the

VAE model in detail, including several limitations, and a number of extensions that

attempt to address them. This is followed by a similar discussion of the GAN model,

and of image-to-image translation methods, which reviews the Cycle-GAN model and

several extensions. Finally, a brief history of image editing models is provided, with

a particular focus on methods that address face editing. Most of the modern image

editing approaches employ the aforementioned deep learning techniques, where GAN-

based methods are particularly popular.

In summary, an introduction to machine learning is provided in Section 2.1, followed

by a general introduction to deep learning in Section 2.2. Generative models, within

the context of deep learning, are discussed in Section 2.3. Two relevant deep generative

methods, VAE and GAN, are described in sections 2.4 and 2.5, respectively. Image-to-

28

image translation methods are examined in Section 2.6. Finally, a description of face

editing methods is provided in Section 2.7.

2.1 Machine learning

Most state of the art methods for image editing, including the ones discussed in the

previous chapter, are based on machine learning techniques. Machine learning methods

define a model to explain the data of interest. Additionally, the model is used to make

predictions about new data, where this process is commonly known as inference. A set

of parameters are used to define the model, where generally speaking models with more

parameters will be able to explain more complex processes, while models with fewer

will be more limited. However, models with too many parameters are computationally

more expensive to evaluate and they might overfit to the training data, i.e. they might

be highly predictive on the data they were trained with, yet fail to generalise on novel

data. The process of finding the best set of parameters for some given data is denoted

as learning.

An alternative to machine learning approaches are physics-based methods. These tech-

niques are useful if the equations governing the system are known and can be simulated

efficiently. One of the reasons why machine learning approaches for image understand-

ing are prevalent, is that the underlying physics governing the image formation process

are complex. A main cause of complexity is due to intrinsic ambiguities in this pro-

cess. Examples of this include occlusions, which might hide important information,

and colour ambiguities, e.g . the apparent color of an object might be due to white light

shone on a coloured object, or due to coloured light shone on a white object. Machine

learning approaches allow learning useful models that are assumed to implicitly ap-

proximate this process from data, without the need to explicitly know and encode in

the model the physical equations.

Machine learning methods have been traditionally divided in two distinct groups: su-

pervised methods and unsupervised methods. The former assumes that for each image

we have a corresponding label that represents the information that we are interested

in learning. For example, we might be given a dataset of images of faces and labels in-

dicating the head orientation. Unsupervised methods on the other hand are concerned

with learning the data generator process and/or uncover trends and other interesting

underlying characteristics given only a collection of images.

Formally these ideas can be expressed in terms of probabilities. In the supervised

29

case, we have a set of observations, {xj}Jj=1, with their corresponding labels, {cj}Jj=1,

where each item is assumed to be an independent sample from a distribution p(c|θ,x),
where θ denotes the learnable model parameters. For the unsupervised case, the label

information is not available, and the goal is to model p(x|θ). Learning usually consists

of finding the model parameters that maximise the probability of the observed data.

Additionally, models can be also be described as either discriminative or generative.

The former are concerned with directly modelling the distribution of the labels given

the images, p(c|θ,x). The latter aim to learn the distribution of images given the

labels, p(x|θ, c), and it employs Bayes’ rule to infer the labels distribution given the

observations,

p(c|θ,x) = p(x|θ, c)p(c)
∫

p(x|θ, c)p(c)dc , (2.1)

where p(c) is a prior distribution over the labels. In the supervised case, the task will

be to learn the model parameters, θ, given the data x and c. Unsupervised models are

usually only applied to generative settings, where θ must be found given only x.

Models can be augmented by latent variables, z, which are usually employed to account

for underlying characteristics in the data that are unobserved. Formally, the data is

conditioned on z, and these latent variables must be marginalised out when evaluating

the data distribution

p(x|θ) =
∫

p(x|θ, z)p(z)dz. (2.2)

A common instance in unsupervised generative settings is to assume that the data can

be indexed by a parameter from an unknown latent space, z. Formally, this would

correspond to

p(x|z,θ) = f(z,θ) (2.3)

where f is a function with learnable parameters θ. The latent parameters, z, could

correspond to the physical parameters that actually produced the data, and the model

is expected to learn them in order to be able to model the data well. For example,

we might be given a dataset of images of faces from which we wish to learn a latent

variable that would correspond to head orientation.

Generative models are of interest for image editing. In particular, for models with

latent variables, new data, x∗, can be sampled given an edited set of latents, z∗. The

latent variables, z, can be inferred, p(z|θ,x), from a given input image, x, and then

a particular parameter in the latents can be altered to construct z∗. With the edited

latents, a new image can be sampled from the learned distribution, p(x∗|θ, z∗), such
that it contains the desired changes. For example, if x models face images, some

30

parameters in z might control the head pose and orientation. We might change those

values, and sample a new image with the desired head pose and orientation. In practice,

the learned latents can rarely be used directly for editing. A common alternative is to

use target labels, c∗, containing the parameters that we are interested in editing. The

values in the target labels would be different from the original image labels, c, and

edited images may be sampled from p(x∗|θ, z, c∗).

Generative models with latent variables also come with a set of disadvantages. In-

ference, i.e. evaluating the posterior distribution, p(z|θ,x), can be computationally

challenging, as it requires employing Bayes’ rule to evaluate it given p(x|θ, z), formally,

p(z|θ,x) = p(x, z|θ)
p(x|θ) =

p(x|θ, z)p(z)
∫

p(x|θ, z)p(z)dz , (2.4)

where p(z) is a prior distribution over the latent variables.

Image editing can also be approached with discriminative models as a regression prob-

lem. In this case, {x, c} reflects a pair of images, where in each pair we have the image

before the editing operation, x, and another after editing, c. We would be interested

in learning the distribution of edited images given the original images, p(c|θ,x). The

main issue with this method commonly lies in collecting the pairs of images needed to

train the model. For example, if a model is required to approximate a complex editing

operation performed by experts on a particular software, the experts are required to

edit a large number of images in order to build a training dataset. This process can

easily become too costly to be practical.

2.2 Deep learning

In the last few years, machine learning approaches, which make use of deep neural

networks (DNN), have become the standard in most computer vision tasks, includ-

ing inpainting [Yang et al., 2017], super-resolution [Ledig et al., 2017] and face edit-

ing [Portenier et al., 2018]. Deep networks are a set of non-linear models that are

flexible and powerful and, which have been shown to be universal function approxima-

tors [Hornik et al., 1989, Cybenko, 1989]. Networks are composed of interconnected

layers, where each layer applies a non-linear transformation to its input. An in depth

discussion of deep learning methods can be found in [Goodfellow et al., 2016]. As most

of the models of interest for our purposes are generative with latent variables, we define

31

deep networks as

x = fn(· · · f2(f1(f0(z))) · · ·), (2.5)

fi(yi) = gi(Aiyi + bi), (2.6)

where z are the latent inputs, x are vectorised images, yi is the input of the fi layer,

gi is a predefined non-linear transformation, such as a sigmoid or a ReLU [Nair and

Hinton, 2010], Ai and bi are the layer learnable parameters, a weight matrix and bias

vector, respectively. Thus, θ = {A0,A1, · · · ,An,b0,b1, · · · ,bn} is used to denote the

entire set of learnable parameters in the DNN.

For image data, convolutional neural networks [LeCun et al., 1998] are the de facto

standard. They employ 2D convolutions, which are equivalent to imposing a local

neighbourhood sparsity pattern on Ai, for vectorised input images, yi. The convo-

lution operation is also location invariant, which significantly reduces the number of

parameters that are learned inAi and bi. Non-linear downsampling techniques, such as

max-pooling [Ranzato et al., 2007], are also a popular tool to reduce the dimensionality

of Ai.

There are a number of approaches for learning the parameters, θ. The simplest one is

maximum likelihood, which finds for each parameter a point estimate under which the

data is most likely. For a generative model this is defined as

θ̂ = argmax
θ

∏

j∈D

p(xj |θ)

 , (2.7)

where D = {xj}Jj=1 is the dataset and θ̂ are the most likely parameters.

The use of large datasets and complex distributions leads to intractable integrals when

employing more complex methods [Neal, 2012] for learning the parameters, θ. More-

over, for complex models it can be significantly challenging to add an informative prior

on the model parameters, as the parameters do not have any intuitive interpretation.

Therefore, in most commonly used state of the art deep learning methods a maximum

likelihood approach is used. For a random initialisation of the parameters, Stochastic

Gradient Descent (SGD) methods are used to find a local maximum solution. The

required gradients can be automatically obtained via automatic differentiation pack-

ages [Abadi et al., 2015]. Popular SGD methods for deep learning models include

Adam [Kingma and Ba, 2015] and RMSprop [Tieleman and Hinton, 2012].

32

Figure 2-1: Overview of deep generative learning models, which employ maximum
likelihood optimisation for estimating their parameters. Explicit methods directly op-
timise the likelihood by using likelihoods with tractable densities, or employing ap-
proximations. Implicit ones optimise the likelihood via sampling, where the samples
are obtained with Markov Chain methods, or directly by the model.1

As discussed in the previous chapter, deep generative methods are of particular interest

for learning image transformations from data. Therefore, we turn our attention in the

next section to generative models, and in particular to those suitable for deep learning.

2.3 Deep generative models

In this section several deep generative models are discussed, including VAEs and GANs,

as this serves to place these two models within the wider context of deep generative

models. In Section 2.1 generative models were defined as characterising the data distri-

bution p(x|θ), potentially conditioned on a latent variable p(x|z,θ). Deep generative

models seek to learn this distribution, where the model parameters, θ, correspond to

that of a deep neural network.

These models can be classified regarding the form of their likelihood distribution, p(x|θ)
or p(x|z,θ), as shown in Fig. 2-1. These divisions arise due to the fact that for many

methods, directly optimising the likelihood is not tractable. On the one hand, there

are methods that define an explicit distribution for the likelihood, which can be in the

form of an intractable integral. On the other, there are methods which have an implicit

likelihood distribution, which only allows to take samples from the distribution. For all

1Diagram adapted from [Goodfellow, 2016].

33

the methods, a point estimate of the model parameters, θ, is evaluated, as discussed

above. However, for the methods that rely on latent variables, z, these parameters are

treated differently from other model parameters, θ, as the latent variables are modelled

with approximate/tractable distributions.

Explicit density

Examples of explicit methods include providing bounds to the likelihood via variational

(VAE) [Kingma and Welling, 2014, Rezende et al., 2014] or Markov chain approxima-

tions [Smolensky, 1986]. Another line of work includes methods that have a tractable

but complex density. Either by employing autoregressive distributions [Oord et al.,

2016], stacking change of variable transformations with triangular Jacobians [Germain

et al., 2015, Dinh et al., 2017] or both [Kingma et al., 2016].

Tractable density methods employing autoregressive distributions are computationally

costly [Oord et al., 2016], as they require evaluating the full model independently for

each pixel. Tractable methods that employ change of variable transformations [Germain

et al., 2015, Dinh et al., 2017] present a better approach, as they do not have this

constraint. However, they usually require composing a large number of transformations

to be able to match the complex densities of real data distributions [Kingma and

Dhariwal, 2018]. Moreover, as they are restricted by construction to be invertible

functions, they learn latent spaces that have the same dimensionality as the input

images. In the previous chapter, we established a preference for models in which

manipulating a single dimension in the latent space corresponds to manipulating a

semantic concept in the image. Hence, these models are not suited for image editing

applications, as in general, a dimension in their latent space will not directly correspond

to a semantic attribute.

The performance of approximate methods is heavily tied to the quality of the approx-

imation that is employed. Markov chain methods [Smolensky, 1986] struggle to scale

beyond modest resolutions [Goodfellow, 2016]. To aggravate matters further, there is

no trivial way to evaluate when the chain has converged to a sample from the model.

Thus, samples from this model are either computationally costly, or biased. Variational

methods [Kingma and Welling, 2014] fare better, as they provide efficient mechanisms

for learning and inference. However, they are known to struggle to generate high-

frequency content for image data.

34

Implicit density

On the other hand, implicit density methods provide means to optimise the distri-

bution via samples. Popular implicit likelihood methods include kernelised moment

matching [Li et al., 2015, Dziugaite et al., 2015] and approximating the ratio of the

data density versus the modelled density, with an auxiliary network (GAN) [Goodfel-

low et al., 2014]. Another approach relies on running a Markov chain to be able to

sample from the model [Bengio et al., 2014].

A significant limitation of moment matching techniques is that they require choosing

an appropriate kernel, large batch sizes and empirically have shown inferior perfor-

mance over density ratio methods [Li et al., 2017a]. Markov chain implicit density

methods share similar limitations as the aforementioned markov chain explicit den-

sity approaches. Ratio estimation approaches are the best performing implicit density

methods, and have been shown to generate photo-realistic images. However, they are

known to have unstable training behaviour, and to only model a (small) subset of the

training data distribution [Radford et al., 2016, Arjovsky and Bottou, 2017].

Given the aforementioned considerations, in the following sections we will discuss in

more detail Variational Autoencoders (VAE) [Kingma and Welling, 2014], as the rep-

resentative for the explicit likelihood methods, and Generative Adversarial Networks

(GAN) [Goodfellow et al., 2014], as the most relevant of the implicit likelihood methods.

Both methods have in common the use of a latent space that has lower dimensional-

ity than the input, thus the latent space is potentially more meaningful than in the

alternative methods. For a more gentle introduction to both models, we refer the read-

ers to Doersch [Doersch, 2016] and Goodfellow [Goodfellow, 2016], for VAE and GAN

respectively.

2.4 Variational Autoencoders (VAE)

In this section we provide a more detailed description of the Variational Autoencoder

(VAE) [Rezende et al., 2014, Kingma and Welling, 2014] model and several of its

extensions.

A VAE is a latent variable model, which learns the probability distribution, p(x | z,θ), of
the input data, x, conditioned on a low-dimensional representation, z, in a latent space.

The likelihood of the input data, p(x | z,θ), is modelled by a decoder, which outputs

the parameters of this distribution. The posterior probability distribution, p(z |x,θ),

35

is intractable. Instead, an encoder is used for inference to provide an approximation to

this distribution, by employing a tractable variational approach, q(z |x,φ) ≈ p(z |x,θ).
In practice, neural networks parametrised by θ and φ are used to model the distribu-

tions. To simplify notation, subscripts will be used to denote model parameters, where

pθ(x | z) = p(x | z,θ) and qφ(z |x) = q(z |x,φ).

The model jointly learns θ and φ, i.e. it learns jointly the data likelihood and the

inference mechanism. The parameters of the neural networks are estimated such that

the marginal likelihood of the input data, pθ(x), is maximised under a variational

Bayesian approximation:

log pθ(x) = DKL[qφ(z |x) || pθ(z |x)] + LVAE, (2.8)

where the variational lower bound is

LVAE = Ez∼qφ(z |x) [log pθ(x | z)]−DKL [qφ(z |x) || p(z)] , (2.9)

where DKL is the Kullback-Leibler divergence, which is defined as

DKL [p(x) || q(x)] = Ex∼p(x)

[

log
p(x)

q(x)

]

, (2.10)

and it will be referred to as the KL divergence henceforth.

On the right-hand side of equation 2.8, the first term measures the distance between

the approximate posterior, qφ(z |x), and the true unknown posterior, pθ(z |x). On

the right-hand side of the variational lower bound, the first term, log pθ(x | z), is

the reconstruction error, and the second term is the KL divergence between the en-

coder distribution, qφ(z |x), and a known prior, p(z). The KL divergence between any

two distributions is by construction a non-negative metric. Therefore, maximising the

bound, LVAE, will be approximately equivalent to maximising the marginal likelihood,

log pθ(x), as long as the approximate posterior distribution is complex enough.

For continuous data, the approximate posterior and the data likelihood usually take

the shape of multivariate Gaussian distributions with factorised covariance matrices

qφ(z |x) = N
(

ρ(x),ω(x)2 I
)

, (2.11)

pθ(x | z) = N
(

µ(z),σ(z)2 I
)

, (2.12)

where x is the image as a column vector, the means µ(z),ρ(x) and variances σ(z)2,ω(x)2

are (non-linear) functions of their arguments. A diagram of a VAE model using Gaus-

36

Figure 2-2: Diagram of a Variational Autoencoder (VAE) [Rezende et al., 2014, Kingma
and Welling, 2014] employing Gaussian distributions, as indicated in equations 2.11
and 2.12. The encoder infers the parameters, ρ and ω, of the latent distribution,
qφ(z |x), of each input image, x. A sample z is drawn from the latent distribution and
used as input for the decoder. This network does the reverse process, transforming
from the latent variable to the data distribution, pθ(x | z), characterised by µ and σ.
Again, a sample x̂ might be drawn from the data distribution.

sian distributions for the data likelihood and the approximate posterior is shown in

Fig. 2-2. The decoder network outputs µ(z),σ(z)2, which defines the probability distri-

bution pθ(x | z). Similarly, the encoder network outputs ρ(x),ω(x)2, defining qφ(z |x).
A slight abuse of notation is used to highlight the factorised nature of the distribution,

where σ(z)2 I denotes a diagonal matrix, such that diag(σ(z)2 I) = σ(z)2, and similarly

for ω(x)2 I. Thus, the data likelihood is equivalent to the forward model:

x = µ(z) + ǫ(z), (2.13)

where ǫ(z) ∼ N
(

0,σ(z)2I
)

is commonly considered as unstructured noise inherent in

the data.

The prior for the latent variables distribution is usually set to an isotropic Gaussian

distribution

p(z) = N
(

0, I
)

, (2.14)

as this simplifies the KL term in equation 2.9 to

DKL [qφ(z |x) || pθ(z)] =
1

2

K
∑

k=1

(

ρ(x)2k + ω(x)2k − log
(

ω(x)2k
)

− 1
)

, (2.15)

37

µ(z)

ǫ(z)

x

Figure 2-3: Samples from VAE model trained on the CelebA faces dataset [Liu
et al., 2015] at a resolution of 64×64. For the predicted Gaussian distribution,
x ∼ N

(

µ(z),σ(z)2 I
)

, in the first row we show µ(z), in the second ǫ(z), and in
the third x = µ(z) + ǫ(z). The mean images, µ(z), lack the high-frequency detail
present in natural face images.

where ρ(x)k and ω(x)k are the kth elements in ρ(x) and ω(x), respectively, and K is

the dimensionality of the latent space vector, z.

VAE models are known to generate blurry outputs, as demonstrated in Fig. 2-3. The

factorised Gaussian likelihood, described above, assumes that the data contains low

levels of unstructured noise. It is expected that the noiseless data would be well mod-

elled by the µ(z), while ǫ(z) could be ignored as we would not be interested in adding

the noise back. As the blurriness appears in the mean images, µ(z), this entails high

levels of noise in ǫ(z).

There are few possible explanations for the observed blurriness. Firstly, the direction of

the KL divergence in equation 2.8 pushes the model to mode covering. In other words,

to place mass of the distribution in areas where there is no data, in order to cover

disconnected regions in the observed distribution. Secondly, the lack of complexity in

the approximate posterior distribution could be negatively affecting the model. The

real posterior, pθ(z |x), might be a complex distribution, yet the approximate posterior,

qφ(z |x), is limited to be a factorised Gaussian. Thirdly, the likelihood model, pθ(x | z),
is also a factorised Gaussian, which implies an unreasonable requirement of exact pixel

correspondence between the input and reconstructed images during training.

Extensions of the model can be classified in three distinct groups, where the last two

seek to address the blurriness issues:

1. approximate posterior regularisation techniques seek to improve the quality

of the learned latent space,

38

2. employing complex approximate posterior distributions (instead of factorised

Gaussians), in order to reduce the approximation error in equation 2.9,

3. employing complex likelihood distributions (instead of factorised Gaussians),

to more effectively model the data distribution.

Each approach will be discussed in more detail in subsequent sections.

2.4.1 Approximate posterior regularisation

Several regularisation terms have been proposed in order to improve the quality of the

learned latent space. Defining the properties of a good latent space is not a trivial task,

and it is hard to measure quantitatively. A popular objective is that of a disentangled

representation, which seeks to find independent factors of variations in an unsupervised

manner. For example, in a dataset of face images we might wish to uncover head pose

or hair colour as one of the independent factors. A detailed overview of such methods

applied to VAEs is provided in [Tschannen et al., 2018], which we summarise in this

section.

These methods can be seen as adding some regularisation term to either the approxi-

mate posterior or the aggregated approximate posterior

LRVAE = LVAE − λ1Ep(x) [R1(qφ(z|x))]− λ2R2(qφ(z)), (2.16)

where the aggregated approximate posterior, qφ(z) =
1
J

∑J
j=1 qφ(z|xj), is a marginal-

isation of the approximate posterior over the dataset, R1 and R2 are regularisation

functions, and λ1 and λ2 are user-defined hyper-parameters. Although, qφ(z) cannot

be tractably computed, acceptable approximations can be evaluated from the mini-

batch during each training step.

An overview of the different regularisation functions that have been proposed is shown

in Table 2.1. Better matching the factorised prior has been shown to lead to more

disentangled representations [Higgins et al., 2017], as this more tightly constraints

the shape of the latent space. Objectives derived with the aim to increase the mutual

information between x and z, Iqφ(x; z), have also been shown to help [Zhao et al., 2017b,

Kim and Mnih, 2018, Chen et al., 2018a]. This mutual information regularisation

has also been found useful when employing powerful decoder distributions, which are

capable of modelling the data without using the latent variables [Makhzani and Frey,

2017].

39

Method R1 R2

β-VAE [Higgins et al., 2017] DKL(qφ(z|x)‖p(z))
InfoVAE [Zhao et al., 2017b] DKL(qφ(z|x)‖p(z)) DKL(qφ(z)‖p(z))
FactorVAE [Kim and Mnih, 2018] TC(qφ(z))
PixelGAN-AE [Makhzani and Frey, 2017] −Iqφ(x; z)
DIP-VAE [Kumar et al., 2018] ‖Covqφ(z)[z]− I‖2F
HFVAE [Esmaeili et al., 2018] −Iqφ(x; z) RG(qφ(z))+λ

′
2

∑

G∈G
RG(qφ(z))

HSIC-VAE [Lopez et al., 2018] HSIC(qφ(zG1
), qφ(zG2

))
Info. dropout [Achille and Soatto, 2018] DKL(qφ(z|x)‖p(z)) TC(qφ(z))

Table 2.1: Overview over different choices of the regularisation functions for the ap-
proximate posterior R1(qφ(z|x)) and the aggregated approximate posterior R2(qφ(z))
of VAE [Kingma and Welling, 2014, Rezende et al., 2014] models. The loss function in
which these regularisation methods are applied is defined in Eq. 2.16.2

Directly encouraging disentanglement by matching the covariance of qφ(z) to an isotropic

Gaussian prior has also been explored [Kumar et al., 2018]. Another line of works seeks

independence between clusters in the latent space as a way to achieve disentangled rep-

resentations [Esmaeili et al., 2018, Lopez et al., 2018].

Derivations from the information bottleneck objective [Achille and Soatto, 2018] also

lead to regularised objectives. Alemi et al . [Alemi et al., 2017] arrive at the aforemen-

tioned objective of Higgins et al . [Higgins et al., 2017], which seeks to better match

the factorised prior. An alternative derivation [Achille and Soatto, 2018] also includes

a total correlation term to increase the dependence between x and z.

These methods show great promise in learning useful unsupervised representations from

complex high-dimensional data, such as natural images. However, they still require

extensive hyper-parameter tuning, λ1 and λ2, and there are no guarantees that they

will uncover useful factors of variation for a given dataset.

2.4.2 Complex approximate posterior

In a standard VAE formulation there are two approximation errors. First, the error

due to employing a variational approximation to the true posterior. In other words, the

factorised multivariate Gaussian (eq. 2.11) has been considered a poor approximation

to the true posterior (eq. 2.8) [Cremer et al., 2018]. The second error is due to the

inference process being amortised over the dataset, as a network is used for the task,

rather than using a method that would provide the optimal lower bound. This is done

2Table reproduced from [Tschannen et al., 2018].

40

(a) True posterior (b) Gaussian approxi-
mate posterior

(c) Flow approximate
posterior

Figure 2-4: Approximate posterior distributions for a VAE with a 2D latent space. The
true multimodal posterior distribution is shown in a). A standard Gaussian approxi-
mation for the posterior is unable to capture the multi-modality of the true posterior.
A more complex flow approximation for the posterior [Rezende and Mohamed, 2015]
is able to better capture the true distribution.3

due to computational constraints, as evaluating the optimal bound is not trivial. An

empirical analysis of the errors due to both approximations is provided in [Cremer

et al., 2018].

In this section we describe several methods that seek to reduce the error due to em-

ploying a variational approximation to the true posterior, by allowing a more complex

approximate distribution, as shown in Fig. 2-4. The hypothesis being that the per-

formance of the model might be improved by providing a tighter variational bound,

eq. 2.9.

This has been achieved by applying transformations with tractable inverses to the pos-

terior distributions [Rezende and Mohamed, 2015]. The type of allowed transformations

involves a restricted set of functions that have triangular Jacobians, which makes the

log determinant evaluation tractable, such as planar flows [Rezende and Mohamed,

2015]. Moreover they are required to be composable, as to provide a simple way to

increase their complexity by stacking several of them. The type of functions has also

been extended to include a family of complex autoregressive transformations [Kingma

et al., 2016] which have the aforementioned properties.

An alternative approach to increase the complexity of the approximate posterior is

to switch to an implicit distribution. As implicit methods are based on sampling,

this means that the KL divergence term in equation 2.9 must be computed with sam-

ples. Two approaches have been proposed, one based on a GAN model, which uses

3Images courtesy of [Cremer et al., 2018].

41

a discriminator to distinguish between samples from the prior and samples from the

approximate posterior [Mescheder et al., 2017]. The other approach uses the Stein

operator to approximate the distribution based on a set of particles [Pu et al., 2017a].

An importance weighted approach [Burda et al., 2016] has also been explored, where

a fixed number of samples from the approximate posterior are weighted to provide a

tighter variational bound. This was later re-interpreted as defining an implicit distri-

bution over the approximate posterior [Cremer et al., 2017]. By having a tighter lower

bound the test likelihood is improved with this approach. However, as the model is

allowed to generate several reconstructions during training, not all of which need to

be good, the quality of individual samples is on average reduced. Moreover, picking

only the good samples is not straightforward, as the likelihood of the samples cannot

be evaluated easily.

Later work showed tighter bounds can be detrimental for the encoder, and this can

affect the performance of the whole model [Rainforth et al., 2018]. To address this

issue, Rainforth et al . propose to use the importance weighted loss [Burda et al., 2016]

for the decoder, and the VAE loss with multiple samples for the encoder.

The gains obtained by these approaches have been marginal in terms of model likeli-

hood. They have been shown to be more useful in terms of the quality of the latent

space distribution, which is useful for our image editing objective. Still, measuring the

quality of the latent space is an open problem, as there are no reliable metrics [Higgins

et al., 2017], and ground truth data only exists for simplified synthetic scenarios.

2.4.3 Complex likelihood

The use of a factorised multivariate Gaussian to model the data likelihood, in equa-

tion 2.12, has been challenged as too constraining, and as the main cause for the

blurry outputs commonly observed when generating images with a VAE [Larsen et al.,

2016, Hou et al., 2017, Gulrajani et al., 2017b]. Several extensions, which seek to

employ more complex likelihood distributions have been proposed.

PixelVAE [Gulrajani et al., 2017b] substituted the factorised Gaussian distribution

with a PixelCNN [Oord et al., 2016] distribution, as shown in Fig. 2-5. PixelCNN

defines a tractable distribution which is defined autoregressively, such that there is one

categorical distribution per pixel, which depends on the previous pixels. In PixelVAE,

42

Input

Reconstruction

Sample

Figure 2-5: Reconstructions and samples drawn from a PixelVAE [Gulrajani et al.,
2017b]. The images produced by the model contain high-frequency details. However,
these additional details do not correspond to the input images.

the autoregressive distribution is also conditioned on the VAE latent variable:

pθ(x|z) =
∏

i

p
(

xi|z, {xk}k∈K
)

(2.17)

p
(

xi|z, {xk}k∈K
)

= Cat
[

λ
(

z, {xk}k∈K
)]

, (2.18)

where K = [0, 1, · · · , i − 2, i − 1] is the set of pixel values that were generated before

pixel i, and λ(z, {xk}k∈K) is a learnable non-linear function of the input variables, i.e. a

neural network. Due to computational constraints, the set of pixelsK is usually reduced

to a small neighbourhood around xi. Employing this distribution allows modelling

correlations in the pixel values, which in turn enables the model to produce high-

frequency details. The autoregressive nature of the distribution implies that each pixel

must be sampled sequentially. As xi is a vectorised image, this formulation induces

directionality in the likelihood distribution, i.e. the pixels are sampled in fixed order,

from left to right and top to bottom. The sampling process involves as many forward

passes of the network as the number of pixels, which is computationally demanding.

Optimisations in the sampling process have been explored [Salimans et al., 2017, Reed

et al., 2017], nevertheless it still remains a costly process. Moreover, as shown in

Fig. 2-5 the additional high-frequency detail does not correspond to the inputs during

reconstructions, which limits the applicability of the model for image editing tasks.

Models that build upon this technique have found that the PixelCNN distribution is

complex enough to be able to model the data without using any information from the

43

latent variables [Makhzani and Frey, 2017]. In other words, if the latents are not needed

for reconstructing the inputs during training, the model can find a trivial solution for

the KL term (in eq. 2.9) by setting the latents to follow the prior. This has led to

employing some of the regularisation techniques presented in the previous section. A

more detailed discussion on this issue and possible solutions can be found in the work

by Chen et al . [Chen et al., 2017].

A perceptual loss [Gatys et al., 2015] has been used to evaluate the data likelihood [Hou

et al., 2017]. The perceptual loss is defined over some hidden layers of a pretrained

classification network as

Lper = ‖ψ(x)−ψ(x̂)‖2, (2.19)

where ψ are the values of the hidden layer in the classification network, x̂ is the image

modelled by the network and x is the real data.

Combinations with implicit likelihood methods have also been explored. The VAE/GAN

model [Larsen et al., 2016] evaluates the data likelihood using a perceptual loss. How-

ever, it uses the features from the intermediate layers of a discriminator, rather than

using a pretained classification network. The discriminator is added as part of an ad-

versarial loss, which is optimised jointly with the lower bound in equation 2.9. Two

scalar hyper-parameter are needed to control the relative weight of the adversarial and

the perceptual loss, with respect to the KL divergence. This model was simplified by

merging the encoder and the discriminator into a single network [Huang et al., 2018].

The perceptual and the adversarial terms are substituted respectively, by an L2 recon-

struction loss in pixel space, and an energy-based adversarial term [Zhao et al., 2017a]

on the latents.

These approaches [Larsen et al., 2016, Huang et al., 2018, Hou et al., 2017] are able

to generate images with high-frequency content, however the added detail need not

correspond with the original image. Furthermore, not evaluating the likelihood in pixel

space has a number of drawbacks. It requires a weighting hyper-parameter for combin-

ing the data likelihood, which may be un-normalised such as the one in equation 2.19,

and the KL divergence in equation 2.9. Moreover, it complicates model comparison, as

the likelihood in pixel space on a test set can no longer be easily evaluated.

A tractable method that allows generating images with high-frequency details with

VAEs will be presented in Chapter 3. Unlike PixelVAE, our method only requires a

single forward pass of the network for sampling and likelihood evaluation. In contrast

to the methods that combine the VAEs with implicit likelihood approaches, our model

evaluates a normalised likelihood in pixel space.

44

Figure 2-6: Diagram of a Generative Adversarial Network (GAN) [Goodfellow et al.,
2014]. The generator transforms random noise, z, into realistic samples, while the
discriminator tries to tell apart the real images from the generated data.

2.5 Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN) [Goodfellow et al., 2014] consist of two parts,

a generator and a discriminator, as shown in Fig. 2-6. The generator produces samples

that resemble the data distribution samples, and the discriminator classifies data sam-

ples as real or fake. The discriminator is trained with the real examples drawn from

a training set and the fake examples as the output of the generator. The generator is

trained to fool the discriminator into classifying generated samples as real. Formally,

GANs are defined by a minimax game objective:

min
G

max
D

Ex∼pdata(x)[log(D(x))] + Ez∼p(z)[log(1−D(G(z)))], (2.20)

where x denotes input data from an empirical distribution pdata(x) (the training set), z

is a random variable drawn from an arbitrary distribution p(z), G is the generator and

D is the discriminator. Thus, generating samples from the model can be done trivially

by

z ∼ N
(

0, I
)

, (2.21)

x = G(z), (2.22)

where the latent variable is sampled from a simple arbitrary distribution, and the

generator transforms the latent variable to image space. Example images generated by

this model are shown in Fig. 2-7.

45

Figure 2-7: Example images generated by a GAN model trained on the CelebA faces
dataset [Liu et al., 2015] at a resolution of 64×64. 4

In practice, both the generator and the discriminator are implemented as neural net-

works, with learnable weights and biases. With a slight abuse of notation, G and D

also refer to the parameters that are optimised in equation 2.20. These parameters are

learned in alternating steps, where the generator parameters are updated for the min,

and the discriminator ones are updated for the max.

Note that the optimum of equation 2.20 is a saddle point, where both the discriminator

and the generator have the optimal parameters. However, it is known that there are

oscillating situations where neither network improves over time [Goodfellow, 2016].

An additional problem, empirically found in GAN models, is that the second term

in equation 2.20 saturates early in training (i.e. the discriminator confidently rejects

the generator samples), providing zero gradients for the generator. In practice a more

robust alternative [Goodfellow et al., 2014] is commonly used for the generator

max
G

Ez∼p(z)[log(D(G(z)))]. (2.23)

In equation 2.20, the target for the generator was constructed by flipping the sign of

the discriminator output. In this version, the target itself is flipped, as the generator

is now maximising the probability of the discriminator being mistaken, i.e. of classify-

ing generated data as real. This formulation ensures that the generator still receives

gradients, even if the discriminator is highly confident when rejecting the generator

samples.

GANs have also been interpreted [Goodfellow et al., 2014] as minimising the Jensen-

Shannon divergence between the generator distribution, pg, and the data distribution,

4Images courtesy of [Radford et al., 2016].

46

pdata. First, we define L(D,G) as the loss that the discriminator maximises

L(D,G) = Ex∼pdata(x)[log(D(x))] + Ez∼p(z)[log(1−D(G(z)))]. (2.24)

For an optimal discriminator, D∗, this loss is equivalent to

L(D∗, G) = 2 (JSD (pdata || pg)− log(2)) , (2.25)

where the optimal discriminator is defined as

D∗ =
pdata

pdata + pg
, (2.26)

and JSD is the Jensen-Shannon divergence, which is defined as:

JSD (p || q) = 1

2
DKL

(

p || 1
2
(p+ q)

)

+
1

2
DKL

(

q || 1
2
(p+ q)

)

, (2.27)

where p and q are two arbitrary distributions, and DKL is the Kullback-Leibler di-

vergence defined in equation 2.10. GAN models have also been extend to optimise

other f-divergences [Nowozin et al., 2016], such as the Kullback-Leibler divergence or

the Pearson χ2 divergence. However, this view does not correspond to how GAN

models are used in practice, as this derivation is only valid when using the original

objective, described in equation 2.20. For the modified objective in equation 2.23,

the loss for an optimal discriminator corresponds to a combination of KL and JSD

divergences [Arjovsky and Bottou, 2017]. Still, this interpretation is also dubious. It

has been demonstrated [Arjovsky and Bottou, 2017] that the variance of the gradi-

ents for updating the generator increases as the discriminator approaches optimality.

Therefore, the discriminator is rarely trained to optimality in practice.

Extensions to this model can be classified into four groups:

1. improving the model stability, as the modified objective in equation 2.23 is not

enough to guarantee stable training,

2. reducing mode collapse, which manifests as the model only learning about a

small part of the real data distribution,

3. addressing the lack of an inference mechanism in the model,

4. providing reliable evaluation metrics is also an area of interest, as the likelihood

on a test set cannot be easily evaluated,

47

Figure 2-8: Example of vanishing gradients for a two-dimensional synthetic distribu-
tion, when there is no overlap between the generated samples and the real data. An
optimal GAN discriminator, which corresponds to equation 2.20, has a constant loss
on both the real and the generated data points. Consequently, producing gradients of
little value for the generator. An optimal W-GAN [Arjovsky et al., 2017] discriminator,
which corresponds to equation 2.28, has a linear loss function, that reflects distance
between the distributions (an Integral Probability Metric [Müller, 1997]). Therefore,
providing gradients that push the generator towards the real data even when the dis-
tributions do not overlap.5

Each approach will be discussed in more detail in the sections below.

2.5.1 Stability

Even when employing the modified objective defined in equation 2.23, GAN models are

notoriously hard to train [Radford et al., 2016]. The stability issues with GAN training

have been mostly attributed to the discriminator providing either zero or unbounded

gradients to the generator [Arjovsky and Bottou, 2017]. Attempting to learn data

distributions that lie on low-dimensional manifolds is believed to be the underlying

cause of the issue. This allows the discriminator to easily discriminate between the

generated and the data distribution as there can be little to not overlap between them.

In such a case, the discriminator loss for the generated data is constant, thus providing

no gradient information for the generator, as shown in Fig. 2-8.

A line of work to address the stability issues focused on carefully tuning a number

of hyper-parameters, such as the architecture and the learning rates to achieve more

stable behaviour [Radford et al., 2016, Metz et al., 2017, Zhang et al., 2018, Karras

5Image courtesy of [Arjovsky et al., 2017].

48

et al., 2019]. These methods provide significant gains in terms of stability and perfor-

mance. Still, these techniques are mostly empirically found heuristics, which do not

fully address the underlying issues in GAN training.

A simple solution to enforce overlapping between the learned and the data distributions

is to add noise, either to the labels or to the images [Salimans et al., 2016, Arjovsky

and Bottou, 2017]. However, this can lead to degraded performance and the amount

of noise required is data and architecture dependant.

A more principled approach is to substitute the Jensen-Shannon divergence with a

metric that has the concept of distance between points [Arjovsky and Bottou, 2017],

where Integral Probability Metrics [Müller, 1997] are a family of such metrics. In other

words, a metric that induces a weak topology on the loss, thus making it easier for

the generated distribution to converge to the real data distribution. The Wasserstein

or earth mover distance has been proposed [Arjovsky et al., 2017] as one such metric.

This leads to the following alternative objective for the GAN model:

min
G

max
D

Ex∼pdata(x)[D(x)]− Ez∼p(z)[D(G(z))]. (2.28)

Employing the Wasserstein distance requires imposing certain smoothness constrains

on the discriminator. Namely, the discriminator must be a 1-Lipschitz continuous

function. For a function, f , that takes as input a scalar, K-Lipschitz continuity is

defined as

|f(x0)− f(x1)| ≤ K|x0 − x1|, (2.29)

where x0 and x1 are any two inputs of the function, and K = 1 for 1-Lipschitz conti-

nuity. Intuitively, it implies that the growth and wiggling of the function is bounded.

Several approaches have been proposed to enforce 1-Lipschitz continuity in the dis-

criminator, including clipping the weights [Arjovsky et al., 2017] and penalising its

gradients [Gulrajani et al., 2017a]. The gradient penalty term is defined as

Lgp = Eẋ

[

(‖∇ẋD(ẋ)‖2 − 1)2
]

, (2.30)

where ẋ is sampled uniformly along a straight line between a real and a generated image.

This loss is weighted by scalar and added in the discriminator step of equation 2.28.

Therefore, this approach adds a new hyper-parameter to the model, which is the weight

of the gradient penalty loss.

Later work [Miyato et al., 2018] employs a spectral weight normalisation technique

49

Figure 2-9: Example of mode collapse in GANs on a synthetic two-dimensional dis-
tribution. The target distribution is shown on the right-most column, which consists
of 8 Gaussians. The bottom row shows the distribution learned by a GAN model,
which only covers a single Gaussian. The top row shows the distribution learned by an
Unrolled GAN [Metz et al., 2017], which is able to cover all the modes.6

to constrain the discriminator (and the generator) to be a 1-Lipschitz function, while

using the non-saturating loss in equation 2.23. This was shown to improve the stability

of the model in a similar degree as the previous method, with the advantage that it is

hyper-parameter free.

GAN stability is still an open problem, as empirical studies [Brock et al., 2019] on

generating images at large resolutions show that the previous regularisation techniques

significantly affect the model performance. Thus they advocate for using the non-

saturating loss and to simply keep the model on the last iteration before the gradients

explode or vanish.

2.5.2 Mode collapse

GAN models are also prone to mode collapse [Arjovsky and Bottou, 2017]. This issue

is observed as the generator learns to model only a small part of the data distribution,

as shown in Fig. 2-9. This is due to the discriminator evaluating the realism of each

image independently, thus it cannot evaluate whether the samples from the generator

cover the whole data distribution or are concentrated on a small portion of the space

with high density. In the limit, a valid optimum for the generator is to memorise a

single training image and reproduce it regardless of the value of the latent vector.

One avenue of work seeks to provide the discriminator with additional knowledge by

allowing it to evaluate some batch statistics, as an approximation of evaluating joint

statistics on the whole dataset. This includes mini-batch discrimination [Salimans

et al., 2016], which changes the discriminator architecture such that the features from

6Image courtesy of [Metz et al., 2017].

50

intermediate layers from one image in the batch are concatenated with the features

from the rest of the batch, thus allowing the discriminator to make the decision for

each image using side information from the other elements in the batch. An average

over the standard deviation of each feature over the minibatch has also been used as

additional information for the discriminator [Karras et al., 2018]. The idea is that if the

standard deviation is significantly smaller on the generated batch, the discriminator

will be able to classify the batch as fake. The main issue with these methods is that

the approximation is limited by the batch size, which for moderate image sizes is

usually no larger than 16 due to hardware constrains [Portenier et al., 2018, Choi

et al., 2018, Karras et al., 2018].

Jointly training an encoder network to project images back to the latent space has

also been shown to reduce mode collapse [Donahue et al., 2017, Dumoulin et al., 2017].

The optimal generator and encoders are inverses of each other. As the encoder must

project all input images to the latent space, the generator is encouraged to cover

the input space. This idea was further developed to include a reconstruction term,

‖z− F (G(z))‖2, where F is the encoder network, on the latent space [Srivastava et al.,

2017]. One of the advantages of this approach is that it allows to provide gradients

to the generator when the discriminator is constant. Moreover, the latent space is by

convention Gaussian distributed, which justifies the use of an L2 reconstruction on the

latent vectors.

Allowing the generator to predict several outputs has also been explored [Ghosh et al.,

2018]. This is achieved by replicating the last layer of the generator c times. The

discriminator is also extended to classify the images in c + 1 domains, where the first

c are considered fake. Thus, the discriminator is trying to guess which of the c output

layers in the generator, produced a specific sample. This pushes the generator to

produce distinct images in each output layer. However, the scalability of this method

is limited as it requires layer replication in the networks.

In a similar fashion when labelled data is available, this extra information has been

used [Miyato et al., 2018] to encourage images from all labels to be represented. How-

ever, this does not ensure that mode collapse will not arise for intra-label samples, and

labelled data is not always available.

The aforementioned methods are able to reduce the mode collapse problem with dif-

ferent degrees of success, however none of them address it completely. It is still an

open question whether mode collapse is inevitable when learning the data distribution

of images with GAN models.

51

(a) Input (b) Reconstructions (c) Samples

Figure 2-10: Images generated from GAN model with an inference network [Huang
et al., 2018]. The reconstructions and the samples contain high-frequency details, yet
the detail in the reconstructions does not match the input.7

2.5.3 Inference

The original GAN model lacks an inference method, i.e. finding the most likely latent

vector, z, for a given input image. This operation is a useful property for editing,

as discussed in Section 2.1. An input image can be edited by manipulating its latent

vector and generating a new image from the edited latent vector.

Several methods have been explored to provide an inference mechanism to GANmodels.

The simplest option is to include an encoder network that is trained post hoc to invert

the generator function [Odena et al., 2017]. Another technique employs a gradient

descent method with an L2 or similar loss in image space, as the generator network is

differentiable. This can be further improved by initialising the gradient descent method

with the encoder result from the previous approach [Zhu et al., 2016]. Nevertheless,

there are problems with these methods as the generator is unaware of the encoder

network.

Extensions have been proposed, which allow training the generator and the encoder

jointly in a coherent fashion [Donahue et al., 2017, Dumoulin et al., 2017, Srivastava

et al., 2017, Huang et al., 2018]. Nonetheless, these models generate reconstructions

that only reproduce global features and pose, with the remaining content not matching

the inputs, i.e. for images containing human faces, there is a loss of identity, as shown

in Fig. 2-10.

A likely cause of the mismatch between the input and the reconstruction is the mode

7Images courtesy of [Huang et al., 2018].

52

collapse problem discussed in the previous section. Adding an inference mechanism

helps to reduce the mode collapse problem, yet, none of the models address it com-

pletely. If significant parts of the input space are not being modelled, the model would

struggle to accurately reconstruct images that are far from the subset of the training

data that it managed to model. Therefore, making it less suitable for image editing, as

the output image must resemble the input.

2.5.4 Evaluation

Evaluation of unsupervised generative models is a complex topic. In explicit likelihood

methods, a standard approach is to compare the data likelihood of a test dataset.

However, as discussed in Section 1.3, there are substantial limitations in employing

this metric. This issue is exacerbated in implicit density methods like GAN, where

a direct evaluation of the likelihood is not possible. Initial work attempted to use

Parzen window estimates as means to approximate the likelihood [Goodfellow et al.,

2014]. However, such strategies fail when applied on high dimensional data such as

images [Theis et al., 2016]. Instead, a combination of alternative metrics is commonly

used for model comparison.

Popular metrics used by current research include the Inception Score [Salimans et al.,

2016], the Fréchet Inception Distance [Heusel et al., 2017] and the sliced Wasserstein

distance [Karras et al., 2018]. The Inception metrics are based on features from a neural

network trained for classification, which means that the metric will be insensitive to

the image properties that the classification network learned to generalise over. For

example, it is known that classification networks are mostly insensitive to pose and

background changes. The sliced Wasserstein distance on the other hand, performs an

initial approximation as it is measured over patches rather than whole images, and a

second one that projects the 5-dimensional pixels (position and colour) to 1D [Rabin

et al., 2012]. Both of these approximations inevitably introduce errors with respect to

the true Wasserstein distance.

User studies have also been used for model comparison [Denton et al., 2015, Salimans

et al., 2016], by asking a human whether an image is real or generated by a computer.

However, user studies require significant effort by the researcher, in terms of design

of the survey, recruitment of participants, analysis of the results, as well as monetary

costs of running the study. Reproducibility can be an issue for modest number of

participants. Moreover, these studies are usually only concerned with image quality,

thus neglecting to evaluate mode collapse. These factors limit the scalability and large

53

scale application as a metric, which in practice is only used once in the final stage of a

publication.

An important limitation of the aforementioned metrics and user studies is that they

do not measure generalisation [Theis et al., 2016]. In other words, a method that

memorises a subset of the training data would score perfectly under these metrics.

2.6 Image-to-Image translation

Image-to-Image translation models, such as Pix2Pix [Isola et al., 2017], learn to trans-

form an image from a source domain to a target domain using an adversarial loss [Good-

fellow et al., 2014]. A generator network learns to predict a transformed version of the

input image such that it appears to belong to the target domain. The discriminator

observes image pairs, with one image from each domain, and assesses their collective

realism. This approach requires paired training data; i.e. each image in the source

domain must have a corresponding image in the target domain. Given this restriction,

the method is often applied to problems where collecting paired data is easier, such as

colourisation, or semantic labels to RGB.

Cycle-GAN [Zhu et al., 2017] overcomes the Pix2Pix limitation of having to operate

with paired data, by means of a cycle consistency loss. Given two data domains, A and

B, Cycle-GAN learns a pair of transformations G : A→ B and H : B → A. The cycle

consistency loss is used to learn coherent transformations that preserve a reasonable

amount of image content, where the loss is defined as

Lacycle = Exa [‖xa −H(G(xa))‖1] , (2.31)

where xa is a sample image from domain A. The cycle loss for domain B is similarly

defined as

Lbcycle = Exb
[‖xb −G(H(xb))‖1] . (2.32)

These models are interesting from an image editing perspective, as they allow to learn

the transformations from unpaired data. Moreover, the issue of poor reconstructions is

significantly diminished in this approach. This is a typical limitation of GAN models,

and it was discussed in Section 2.5.3. However, Cycle-GAN models are limited in that

they require 2 generators and 2 discriminators for each domain pair, and this does not

scale well with an increase in the number of domains.

54

Figure 2-11: Overview of StarGAN [Choi et al., 2018], a state of the art image-to-image
translation model. Top row, an input image, x, is modified by a generator, G, given
some target domain labels, c̄. The generator tries to fool the discriminator, D, into
classifying the generated image, x̄, as real and also as having the target domain labels.
Bottom row, the discriminator is trained to accurately predict the original domain
labels of the input image. Also, it tries to classify the input image as real, and the
generated ones as fake. Not shown, a cycle consistency loss is also employed, where
the generator is used again with the generated images and the input domain labels to
reconstruct the input image.

Cycle-GAN was generalised by StarGAN [Choi et al., 2018] to require only a single

generator and discriminator to translate between multiple domains, as shown in Fig. 2-

11. Here, each image x has a set of domain labels, represented as a binary vector

c. The generator, G(x, c̄), transforms x to match some target domains indicated by

c̄. A classifier is added such that it outputs the probability that x has the associated

domains. This classifier learns the real domain labels from the training data, and it

is used on the generator output to ensure the translated image matches the target

domains.

A common issue with Cycle-GAN [Zhu et al., 2017] and its extensions is that they find

undesired correlations within a domain, leading to excessive image modification. For

example, when transforming from dogs to wolves, it tends to edit grass backgrounds to

snowy ones, as wolves are usually found in such environments. A number of methods

have been proposed to overcome this issue: RESGAN [Shen and Liu, 2017] edits the

image via a sparse residual image, which allows restricting the quantity of edited pixels.

55

Residuals are an overcomplicated representation for edits such as geometric deforma-

tions, as the network must model the whole content in a region in order to be able to

remove it and add it back in another location. Restricting the edits to a region given

by a soft mask, which is also predicted by the generator has also been explored [Mejjati

et al., 2018, Pumarola et al., 2018]. The model is complicated by the additional mask

prediction network, and it also requires extra care to avoid poor solutions.

CycleGAN-based models have been shown to encode additional information on the

generated images that is imperceptible to humans [Chu et al., 2017]. This information

is used by the network to be able to reconstruct the original image as required by the

cycle loss in equations 2.31 and 2.32. In StarGAN models, this issue manifest as the

generator learning to ignore the input domain labels for images which have already

been edited, as the edited images are only used at training time for the cycle loss.

Adding a triple consistency loss has been shown to diminish this issue [Sanchez and

Valstar, 2018], where the loss is defined as

Ltri cycle = Ex,c̄,ĉ [‖G(x, c̄)−G(G(x, ĉ), c̄)‖1] , (2.33)

where we use the notation of StarGAN with a single generator G, controlled by target

labels c̄, where x is the input image and ĉ denotes intermediate random labels for the

domains. The loss encourages the network to produce consistent results regardless of

any intermediate steps, G(x, ĉ).

2.7 Face image editing

In this section we discuss methods for image editing, with a focus on techniques designed

for manipulating faces. There has been much work in this area, where most of the

methods presented here follow a machine learning approach, while modern techniques

employ deep learning.

The types of edits that are allowed by these methods include: expression changes [Guenter

et al., 1998], adding makeup [Guo and Sim, 2009], ageing [Kemelmacher-Shlizerman

et al., 2014] or relighting [Blanz and Vetter, 1999]. As it was discussed in the previous

chapter, these methods provide controls that allow the direct modification of these high

level semantic aspects of the image, while preserving the identity of the subject.

56

a) b) c) d)

Figure 2-12: Example of image editing with a linear subspace model [Nguyen et al.,
2008]. The input image, a), is aligned to a mean face, b), the beard is removed by
performing a robust reconstruction in a non-beard linear space, c), and the edited face
is projected back to image space, d).8

Traditional generative models

Early editing methods are based on modelling faces as a linear combination of com-

ponents. In the most basic form, this can be written as x = x̄ + Ab, where x is the

vectorised input image, x̄ is a mean face, A is a matrix, and b is a vector containing

the mixing coefficients. The Ab operation can be seen as a linear combination of basis

vectors, and novel images may be generated from the model by drawing a sample from

the mixing coefficients vector, b, and evaluating x from it.

Eigen faces [Turk and Pentland, 1991] employ PCA on a training set to estimate the ba-

sis matrix, A. This method was originally designed for face recognition, yet, extensions

of the model have been used for graphics applications. For example, this approach

allows for simple editing operations, such as removing beards in frontal and aligned

images [Nguyen et al., 2008], as shown in Fig. 2-12. This is achieved by modelling the

image as a sum of two linear combinations, x = Ab + Cd + ǫ, one that models the

beard part of the faces, Ab, one that models the non-beard part, Cd, and a residual

component, ǫ. Although attractive for their simplicity, these methods have limited

capability due to the linearity assumptions.

Active appearance models [Cootes et al., 1998] add some complexity by separating

shape from texture. Thus, describing face shape as a mean shape plus a weighted

combination of basis, and face texture as another mean plus weighted combination. A

face image is constructed by first generating the texture, and then warping it according

to the shape. In contrast to previous approaches, this method can handle more complex

expressions and texture changes.

Morphable models [Blanz and Vetter, 1999] are an extension of active appearance

8Image courtesy of [Nguyen et al., 2008].

57

models to 3D. Thus, requiring the estimation of shading parameters and fitting a

3D shape model. This better captures the real physics under the image formation

process, leading to improved results in most cases. However, the shading parameters

are restricted to be Phong coefficients, and in practice the optimisation procedure

struggles with real images due to occlusions and large changes in illumination.

In a similar fashion, blendshape models [Guenter et al., 1998] describe a face as a

linear combination of shape, and another of texture. However, instead of learning an

orthogonal basis from the training set using PCA, the basis matrix is constructed for a

single individual. Usually, each component corresponds to a different face expression.

This allows the model to provide interpretable controls, as the weighting coefficients

correspond directly to a given facial expression. The requirement of several images of

the same face in different expressions limits the applicability of this approach, which is

further restricted as it also requires video [Garrido et al., 2013] or multiple cameras to

be able to reconstruct the 3D shape model.

A probabilistic approach to edit and synthesise face images has also been explored [Mo-

hammed et al., 2009]. This model uses a factor analyser [Bishop, 2006], which is equiv-

alent to adding a noise term to the linear combination of components. Thus, it can

be written as x = x̄ + Ab + ǫ, where p(b) = N
(

0, I
)

, p(ǫ) = N
(

0,Σ
)

and Σ is a

diagonal covariance matrix. As the images generated by the factor analyser are overly

smooth, a patch-based texture synthesis method is used to refine the generated images.

Two editing applications were demonstrated: first, directly painting over the image

generated by the factor analyser. Second, editing a single expression, where the model

is trained with paired images where the subject is captured with a neutral expression,

and with the target expression. The probabilistic approach enhances the capabilities

of the model, and it also allows using it as an inpainting method.

These linear combination methods are mostly limited by the number of components

that they require. In general, these components would cover only the modes of variation

that are more common. Thus, failing for less frequent cases that are not well covered

in the training set.

Exemplar-based methods

Several methods for editing have been proposed that require (at least) two images

during inference, the input image to be edited, and an example image that describes

the target edit. This task is difficult as the face in the example image is usually not well

58

a) b) c)

Figure 2-13: Example of image editing by decomposing a face into a face structure
layer, a skin detail layer, and colour layer [Guo and Sim, 2009]. The example image
b) is warped to match the input image a). The input and the warped example are
decomposed into the aforementioned layers. And the editing is performed by combining
layers, producing image c).9

aligned with the face in the input image in terms of pose. There might be significantly

different lighting conditions in both images, and depending on the edit, only a small

subset of the texture in the example image should be transferred to the input.

An avenue of work consists of decomposing the image into different layers that simplify

the transfer of content from one to the other. This is similar to the aforementioned

beard removal approach of [Nguyen et al., 2008], where the face was divided into beard

and non-beard components. For instance, makeup transfer has been demonstrated by

decomposing the image into three layers: face structure, skin detail and colour [Guo

and Sim, 2009], as shown in Fig. 2-13. An alternative consists of a Laplacian pyramid

decomposition, which allows for image enhancement and style transfer, e.g . for match-

ing more general features, such as overall colour and high-frequency details [Shih et al.,

2014]. Later work showed that under a similar decomposition, an example image was

not needed for a number of edits [Boyadzhiev et al., 2015]. A pyramid is constructed

by splitting the image into low and high-frequency components, splitting those into low

and high amplitude components, and finally splitting again into positive and negative

components. The authors showed that employing simple operations on the compo-

nents, such as scaling or addition, lead to consistent image changes. For example, this

method allows editing the skin such that it appears either, more oily, smoother or with

more blemishes.

Modern approaches that do not rely on deep learning have also proven successful. For

example the method of [Averbuch-Elor et al., 2017] operates on a sparse set of landmark

correspondences between the input and the exemplar faces. The technique is originally

9Image courtesy of [Guo and Sim, 2009].

59

presented for example videos, rather than a single example image. For simplicity, we

will assume an example video containing a single frame in the following discussion.

The method first aligns the example face to the input face using a similarity transform.

Once aligned, the input image is warped based on the landmarks, which are extended

by hallucinating additional landmarks in the background. The hallucinated landmarks

serve to avoid undesirable warps outside of the face region. The mouth interior is

directly transferred from the example image using Poisson blending [Pérez et al., 2003]

and fine scale details are transferred with a ratio image technique [Liu et al., 2001].

The use of these heuristics for editing limits the example image to be somewhat similar

to the input image, in order to generate a good quality edit.

By restricting the example image to be an image from the same subject, a number of

applications have been developed. For example, editing an image with several people,

such that everyone in the picture is looking at the camera and smiling [Agarwala et al.,

2004] or automatic deblur and exposure correction [Joshi et al., 2010]. Transfer of open

eyes, for correcting images where subject appears with closed eyes [Shu et al., 2016],

and expression transfer [Yang et al., 2011] have also been explored.

Both types of exemplar methods, with or without the restriction that the example

image belongs to the same person, are designed for restricted tasks, where the domain

assumptions limit their applicability to more general settings.

Modern deep learning approaches

Recent image editing methods [Portenier et al., 2018, Dekel et al., 2018, Choi et al.,

2018, Geng et al., 2018] employ deep learning techniques. Example images edited by

these models are shown in Fig. 1-5 in Chapter 1, and in Fig. 2-14. Particularly popular

are the use of GANs, which were discussed in Section 2.5. Especially, GANs in a similar

form as the Pix2Pix networks [Isola et al., 2017] discussed in Section 2.6, where the

generator is trained with an adversarial loss and an L1 loss to the ground truth image.

Several methods that learn how to reconstruct images from contours have been pro-

posed. Image editing is defined in these models as manipulations of the countours.

TalkingHeads [Zakharov et al., 2019] and MakeAFace [Qian et al., 2019] use sparse con-

tours. In TalkingHeads semantic information is added to the contours, indicating which

face region they correspond to, e.g . mouth, eyes or nose. In the case of MakeAFace, a

VAE with a Gaussian mixture prior on the latent space is used, which helps in learning

a more disentangled representation of shape (as encoded by the contours) and tex-

60

a) b) c)

Figure 2-14: Example of expression transfer using Warp-Guided GAN [Geng et al.,
2018]. The expression is transferred from an exemplar image, b), into an input image,
a), generating an edited image, c). The approach does a rough warp of the input based
on the exemplar and then uses two deep neural networks. One to refine the result after
warping, and second to hallucinate previously occluded content in the mouth area.10

ture, which is in line with the research discussed in Section 2.4.2. FaceShop [Portenier

et al., 2018] relaxes the assumption of access to precise contours, by employing less

accurate sketches for training, which leads to increased robustness during inference.

Contour2im [Dekel et al., 2018] employs denser contours, which also include additional

colour gradient information.

The aforementioned methods require paired data, where the distance between the syn-

thesized and the ground truth images is measured with an L1 pixel loss. An adversarial

loss is used to improve the realism in TalkingHeads, Contour2im and FaceShop, while

MakeAFace relies on a perceptual loss [Gatys et al., 2015]. Editing based on sketches

or contours significantly simplifies the data collection process, as semantic labels are

not required, and contours and sketches can be obtained automatically. However, these

type of manipulations are more cumbersome than editing via semantic knobs.

Another line of work is based on the 3D Morphable model (3DMM) [Blanz and Vetter,

1999], which was discussed at the beginning of this section. An extensive review of

these methods is provided by Zollhöfer et al . [Zollhöfer et al., 2018], and we only discuss

here the most relevant techniques. Fitting a 3DMM is a highly non-linear problem,

where deep learning techniques can be used to bypass this issue by directly predicting

the parameters of the blendshape model [Richardson et al., 2016, Tuan Tran et al.,

2017, Tewari et al., 2017]. These methods are commonly trained without ground truth

data for the 3DMM parameters, as this data is expensive to acquire. Some techniques

employ synthetic data [Richardson et al., 2016], which leads to reduced performance

on real images. If several images of each subject are available, an approximation of the

ground truth data can be obtained by estimating the 3DMM parameters for each image

10Image courtesy of [Geng et al., 2018].

61

and averaging the values per subject. Neural networks trained on this data have been

shown to achieve competitive levels of accuracy [Tuan Tran et al., 2017]. A different

approach [Tewari et al., 2017] relies on placing reconstruction losses directly on the

rendered images, while employing additional regularisation losses to make the problem

tractable. However, training directly with images requires employing approximations in

the rendering pipeline, as the renderer must be differentiable in order to backpropagate

the gradients to the neural network.

An alternative approach that overcomes the issues with differentiable renders has been

explored. The key idea is to employ a network to fix the artefacts present in the image

edited by the 3DMM. This has been used both for video re-enactment [Kim et al.,

2018, Geng et al., 2018] and for animating 3D avatars in real time [Nagano et al.,

2018]. Similarly to previously discussed approaches, the networks employed in these

methods are variations of Pix2Pix.

Particularly relevant to the work presented in this thesis is Warp-Guided GAN [Geng

et al., 2018]. An example of an edit from this method is shown in Fig. 2-14. This model

is an extension of the method of [Averbuch-Elor et al., 2017], which was discussed above.

Recall that this method aligns the faces, warps the input face based on landmarks,

transfers fine details via ratio images and transfers the mouth interior with Poisson

blending. In Warp-Guided GAN a 3DMM model is fitted to the video, which leads

to better warps. The ratio images are substituted by a Pix2Pix network, which adds

the high and medium frequency details that could not be added by warping alone. A

second Pix2Pix network is used to inpaint the mouth area, which is an improvement

over directly transferring the mouth from the example face to input face image using

Poisson blending. An important limitation of this approach is the requirement of

paired data for training, which is shared with all previous methods employing Pix2Pix

networks.

Alternative approaches that do not use GAN networks have also been proposed. For

example, Facelet-Bank [Chen et al., 2018b] edits images with an autoencoder network.

First, the network is trained by performing image reconstructions with an L1 pixel

loss and a feature loss. The feature loss encourages the encoding of the input image

to be similar to the encoding of the output image. Then, the decoder is fixed, and

an additional network learns how to modify the decoder features, so that rather than

reconstructions, the decoder outputs an edited image. The features used to train the

additional network are constructed by averaging the features of neighbouring images

with the target attribute.

62

As discussed in the previous chapter, a significant limitation of deep learning meth-

ods is that they are constrained to operate at the same (or similar) resolution of the

training images. Some deep learning methods have been proposed that are capable

of operating at arbitrary resolutions [Yeh et al., 2016, Gharbi et al., 2017]. However,

these techniques require paired data, while many of the aforementioned approaches

employing adversarial or perceptual losses do not. In contrast to these approaches, a

method that is able to edit images at arbitrary resolutions, that can be trained with

unpaired data, and that does not require example images to describe the target edit

will be presented in Chapter 4.

63

Chapter 3

Structured uncertainty

3.1 Introduction

In Chapter 1, the Variational Autoencoder (VAE) [Rezende et al., 2014, Kingma and

Welling, 2014] model was described as a promising method for image editing. However,

as discussed in Section 2.4, this method is known to generate blurry samples.

In this chapter we describe a method that allows VAE models to generate images

that contain high frequency details. Our method operates on Multivariate Gaussian

distributions, as it predicts structured uncertainty distributions over residual images.

A näıve approach to predict full covariance matrices would be computationally in-

tractable, yet we employ covariance matrices with sparse inverses, which are a tractable

subset of these distributions. Moreover, the method can be applied to any model that

is trained for reconstructions and that outputs the mean of a Gaussian distribution.

3.1.1 Motivation

Deep probabilistic generative models have recently become the most popular tool to

synthesise novel data. Particularly of interest for our applications is their use for

image editing. Generative models require solving a density estimation problem. We

concentrate on latent variable models where an explicit representation of the data

density is given by the model, such as the VAE.

For latent variable models over continuous data, it is common to use a factorised mul-

tivariate Gaussian distribution to model the data likelihood conditioned on the latent

64

Diagonal Our structured
Gaussian Gaussian

(a) µ

(b) ǫreal (c) ǫdiag (d) ǫstruct

(e) x (f) µ+ ǫdiag (g) µ+ ǫstruct

Figure 3-1: A VAE with a diagonal Gaussian likelihood learns the mean of the dis-
tribution, µ, as a smooth reconstruction of an input image, x. The residual for this
reconstruction is ǫreal = x − µ. The diagonal Gaussian only models unstructured
residuals, where ǫdiag is a residual sample. When ǫdiag is added to µ it generates an
unrealistic image (f), demonstrating a failure to capture the real residual structure,
ǫreal. In contrast, we learn a structured residual model, with residual samples like
ǫstruct that, when added to µ, generate a plausible and realistic image (g).

variable. This can be stated as p(x | z) = N
(

µ,Σ
)

, where x is an image flattened as a

column vector, z is a latent variable, and the parameters of the Gaussian distribution

are a mean vector, µ, and a covariance matrix, Σ. This corresponds to the forward

model x = µ+ ǫ, where ǫ is a residual image, which is usually interpreted as noise in

the data, and it is distributed as ǫ ∼ N
(

0,Σ
)

.

In factorised multivariate Gaussian distributions, the factorisation occurs in the covari-

ance matrix, Σ, which rather than a full matrix, is modelled either as a diagonal or

scaled identity matrix, and may also be assumed to be shared for the whole dataset.

The most extreme factorisation is that of the mean squared error, which assumes the

errors at all pixels are i.i.d. (independent and identically distributed). Formally, using

a mean squared error loss is equivalent to setting Σ = I. Diagonal covariance mod-

els [Kingma and Welling, 2014, Burda et al., 2016] are an improvement, as they allow

some local estimation of noise level but maintain the strong and flawed assumption

that pixel values in the residual are uncorrelated, as shown in Fig. 3-1b, 3-1c and 3-1d.

These common choices of likelihood imply that if one were to draw a sample from the

model (x = µ+ ǫ), which would include the additive noise term, ǫ, as opposed to just

65

the mean, µ, white noise would be added to the generated image, x, which is unlikely

to ever appear realistic, as shown in Fig. 3-1f. For these reasons, most researchers only

show the mean of the distribution, an overly-smooth µ, when employing these mod-

els [Larsen et al., 2016, Yan et al., 2016]. This emphasises the incoherence in generative

models caused by these simplifications, and this is addressed in this chapter.

3.1.2 Proposed solution

We postulate that the residuals are highly structured and reflect limitations in model

capacity – we therefore propose to estimate the conditional data likelihood, p(x|z),
using a multivariate Gaussian distribution with a full covariance matrix, to capture

pixel-wise correlations which will in turn improve the sampled reconstructions, as shown

in Fig. 3-1d and 3-1g. In more detail, a deep neural network is used to predict full

covariance matrices to model the residual distributions.

Providing the VAE with a structured noise model endows it with the capability of mod-

elling complex, high-frequency features, which do not reliably occur in the same location

(e.g. hair), stochastically rather than deterministically. In a VAE this approach implies

learning to predict the parameters of a multivariate Gaussian distribution to explain a

single image sample. This is a poorly conditioned problem, which requires informative

priors to avoid model overfitting and other poor solutions.

A few techniques are explored in this chapter; however they were found to either restrict

the space of solutions excessively or to be insufficient to be able to train the model

reliably. Interestingly, we found two alternative approaches that work well in practice.

The first method consists of training a VAE with a factorised Gaussian likelihood, and

learning a separate network to model the residual distribution of the trained VAE.

The second approach employs two regularisation losses as an approximation to an

informative prior on the multivariate Gaussian distributions.

A näıve approach to training a VAE with a structured Gaussian likelihood would

involve predicting a covariance matrix with ((3n)2 + 3n)/2 unique parameters and a

mean with 3n unique parameters, where n is the number of pixels in an RGB image.

This is computationally infeasible with standard strategies for training deep neural

networks, and it would require very informative priors, as there is only one residual

sample to learn the distribution from. Instead, we propose to operate on the restricted

set of multivariate Gaussian distributions where the covariance matrices have sparse

inverses. The inverse of a covariance matrix is known as the precision matrix, and

66

our proposed approach models these precision matrices, rather than operating with

covariance ones.

Sparse precision matrices allow tractable evaluations of the likelihood (needed for train-

ing) and provide tractable methods for sampling (needed for inference). Moreover, the

proposed sparsity pattern is based on how close pixels are in image space, and this

sparse approximation has a complexity that grows linearly with the number of pixels.

A key aspect is that the covariance matrix is not sparse, even though its inverse matrix

is sparse. Thus, it can model long range correlations, e.g . strands of hairs, as long as

sufficient correlations are induced by the local structure in the precision matrix.

We demonstrate that a network to estimate these matrices can be tractably learned

without ground truth data for the matrices, by employing maximum likelihood estima-

tion on the residual images. Moreover, the model can predict covariance matrices that

generalise well to previously unseen examples.

A key advantage of our approach for modelling structured uncertainty with a separate

network, is that it can be readily applied to any black box method that outputs the

mean of a Gaussian distribution; for example, to methods trained with mean squared

error. Furthermore, the results could in principle be extended to other approaches in

future work, such as implicit likelihood methods [Goodfellow et al., 2014], or methods

that measure the data likelihood in a feature space [Hou et al., 2017].

3.2 Previous work

Our method builds upon the Variational Autoencoder (VAE) model, which was de-

scribed in Section 2.4. Several approaches to regularise the approximate posterior

distribution, as well as increase the complexity of the approximate posterior and the

likelihood distributions were discussed. Most relevant to the content of this chapter are

the methods that seek to employ more complex likelihood distributions in the model,

which were presented in Section 2.4.3.

Those methods either model the likelihood as an autoregressive distribution [Gulrajani

et al., 2017b], or transform the VAE into an implicit likelihood method, by adding terms

that do not fit within an explicit likelihood generative model [Larsen et al., 2016, Hou

et al., 2017, Huang et al., 2018]. The former requires as many forward passes of the

network as the number of pixels in the image, which makes the method too slow for

image editing applications. The latter are less principled approaches that involve hyper-

67

parameter tuning for the added terms, that lack the means to evaluate the likelihood

in pixel space on a test set for model comparison, and whose reconstructions do not

resemble the inputs well. Thus, also rendering these methods inadequate for image

editing.

The focus of this chapter is on statistical quantification of uncertainty. Therefore,

we devote the remainder of this section to related methods for structured uncertainty

prediction.

3.2.1 Structured uncertainty prediction

Statistical quantification of uncertainty has been an area of interest for a long time.

Many traditional statistical estimation models provide some measure of uncertainty

on the inferred parameters of a fitted model [Tipping and Bishop, 1999, Bartholomew

et al., 2011]. However, as discussed in Section 2.2 quantification of parameter uncer-

tainty is, in general, not tractable for deep learning generative methods.

Instead, we focus on uncertainty on the predictions made by the model, i.e. how con-

fident is the model in its predictions. This uncertainty is usually dominated by two

sources of noise. First, noise inherent in the data, which is usually introduced when

acquiring the data. Second, noise due to deficiencies in the model, such as limited

number of parameters or optimisers that are unable to reach the global optima during

the learning phase.

This uncertainty on the model outputs is often modelled as a factorised multivariate

Gaussian distribution. A common issue with these models is the false assumption of

independence between pixels in the reconstruction residual image. In standard meth-

ods only a few samples of the residual are available (usually only one), which limits

the ability to reliably estimate more complex uncertainty models. Previous work on

modelling correlated Gaussian noise is limited, it has been used for small data scenarios

[Nikias and Pan, 1988], for temporally correlated noise models [Woolrich et al., 2001]

and in Gaussian processes [Rasmussen and Williams, 2006].

The most recent related work on uncertainty prediction for deep models has been the

prediction of heteroscedastic Gaussian noise for encoder/decoder models [Kendall and

Gal, 2017]. This approach is similar to the variational autoencoder with a Gaussian

likelihood with a diagonal covariance [Kingma and Welling, 2014], but can be applied

when the input and the generated output are different, for example in semantic seg-

mentation tasks, as shown in Fig. 3-2. The authors claim that the predicted variance

68

Input Ground truth µ σ2

Figure 3-2: Uncertainty prediction in encoder-decoder models for semantic segmenta-
tion [Kendall and Gal, 2017]. The method is able to predict independent per-pixel
uncertainty, σ2, on the predicted segmentation maps, µ.1

maps, denoted as σ2 in the figure, are indicative of regions with high acquisition noise.

However, these maps correspond well to high frequency content in the image, similarly

to the VAE with a diagonal noise model (see Fig. 3-25). Thus, indicating regions that

the model consistently struggles to accurately predict. Hence, areas which should be

modelled as having low variance and high covariance are being modelled as regions

with high variance, as their approach is by construction unable to model covariance.

This is further encouragement for the work presented in this chapter, which is able to

cope with these regions, as will be shown in Fig. 3-25 for a reconstruction task.

3.3 Methodology

In this section we introduce an extension of the VAE model, which is trained with

a structured Gaussian likelihood. We also discuss a restricted standalone structured

uncertainty prediction model that can be applied to models with a Gaussian likeli-

hood. This section builds on the VAE model, and we use the notation introduced in

Section 2.4.

For easier reading, the relevant equations are repeated below. The variational approx-

imation, equation 2.9, used in the model was defined as

LVAE = Ez∼qφ(z |x) [log pθ(x | z)]−DKL [qφ(z |x) || pθ(z)] , (3.1)

where x is a column vector containing a vectorised image with n pixels, and z is the

latent vector. The data likelihood, equation 2.12, is that of a multivariate Gaussian:

pθ(x | z) = N
(

µ(z),σ(z)2 I
)

. (3.2)

1Images courtesy of [Kendall and Gal, 2017].

69

The aforementioned likelihood corresponds to the forward model:

x = µ(z) + ǫ(z), (3.3)

where ǫ(z) is known as the residual, and it is defined as

ǫ(z) ∼ N
(

0,σ(z)2I
)

. (3.4)

As previously stated, most multivariate Gaussian models employ a factorised likelihood,

equation 3.2, which assumes that the pixels in the residual, ǫ(z), are independently

distributed. In contrast, we extend the noise model to use a multivariate Gaussian

likelihood with a full covariance matrix

pθ(x | z) = N
(

µ(z),Σ(z)
)

, (3.5)

where µ(z) and Σ(z) are a parametric (non-linear) functions; this is equivalent to

ǫ(z) ∼ N
(

0,Σ(z)
)

. The covariance matrix captures the correlations between pixels to

allow sampling of structured residuals as demonstrated in our experiments.

In our method, the covariance captures structured information about reconstruction un-

certainty of the generative model. This means that drawing a sample from N
(

0,Σ(z)
)

and adding that to the mean, µ(z), may produce a result that is more representative of

the target image, as shown in Fig. 3-1. However, any given sample will not necessarily

have a lower reconstruction error under a mean squared error loss. For example, in the

case of images of human faces, the covariance might capture high-frequency details,

that cannot be exactly modelled by the VAE, like hair details. Hair details sampled in

this way will not necessarily align with the input hair, yet they make the image look

more realistic.

A maximum likelihood approach is used to train the model. The aforementioned modi-

fications only affect the likelihood term in equation 3.1, leaving the KL term unchanged.

When using a full covariance matrix, the likelihood term is expanded as

log pθ(x | z) = −1

2

(

log
(∣

∣Σ(z)
∣

∣

)

+
(

x− µ(z)
)T(

Σ(z)
)−1(

x− µ(z)
)

+ c
)

, (3.6)

where c = 3n log(2π) is a constant term that does not affect the optimisation.

We will assume the input images are grey-scale, as this simplifies the discussion. In

Section 3.3.4 we will show that our grey-scale derivation can be easily adapted to colour

images. To simplify notation, in subsequent sections Σ, µ and ǫ are used to denote

70

Σ(z), µ(z) and ǫ(z) respectively.

3.3.1 Covariance estimation considerations

The decoder network is used to estimate the covariance matrix, Σ, and the means, µ,

from the latent vector z. The part of the decoder network responsible for estimating

the covariance matrix will henceforth be referred to as the covariance network. This

learning task is challenging on two fronts. First, the task is computationally challeng-

ing, with a complexity of O(n2), as the covariance matrix contains (n2 + n)/2 unique

elements, where n is the number of pixels in the image. Second, it is ill-posed as no

ground truth covariance matrices are available for real data. Moreover, for each train-

ing example, a full covariance matrix must be estimated from a single residual image,

which increases the probabilities of overfitting.

For any covariance estimation method there are four aspects to consider:

(i) how difficult is it to sample from the covariance matrix?

(ii) how difficult is it to compute the terms (or their gradients) in equation 3.6?

(iii) how difficult is it to impose symmetry and positive definiteness on the estimated

matrix?

(iv) what are the memory requirements and computational costs?

The standard sampling approach for N
(

µ,Σ
)

, given a decomposition of the covariance

matrix in the formΣ = MM
T
, is defined as x = µ+ǫ, where ǫ = Mu, and u ∼ N

(

0, I
)

is a vector of standard Gaussian samples. In this decomposition M is constrained to

contain only real values. Note that this decomposition of Σ is not, in general, unique.

Cholesky decompositions and eigendecompositions are popular choices for numerically

estimating M, and they will be explained in the subsequent section.

By definition, the covariance matrix is symmetric and positive definite.2 A matrix is

symmetric if σi,j = σj,i, where σi,j is a single element in Σ, and the condition must be

fulfilled for all possible i and j pairs. Positive definiteness is defined as x
T
Σx > 0, for

any x that contains real numbers.

2 Technically the matrix may be positive semi-definite x
T

Σx ≥ 0. Contrary to the positive definite
case, this allows for |Σ| = 0. If this occurs, the probability density function is degenerate, i.e. the
density of x is not defined. Usually, this arises when x and Σ live on a lower dimensional manifold,
and in that manifold the matrix is positive definite, i.e. the density of x is defined if it is evaluated on
the manifold. In order to avoid this degenerate state, only positive definite matrices are modelled.

71

If Σ is the direct output of the covariance network, it needs to be inverted to calculate

the negative log-likelihood in equation 3.6. Hence, it is more practical to estimate

the precision matrix Λ = Σ−1 as this term appears directly in the log likelihood, and

the log determinant term can be equivalently computed as log(|Σ|) = − log(|Λ|). The
inverse of a symmetric positive definite matrix is also symmetric and positive definite.

Therefore, it is enough to enforce these constraints on Λ to ensure that they appear in

Σ. Since sampling still requires a decomposition of the covariance matrix, this approach

will be in general less efficient in that regard. However, a number of techniques will be

presented to mitigate this issue.

3.3.2 Precision matrix parametrisations

In this section we discuss previously used parametrisations for the precision matrix, in-

cluding the eigendecomposition and the Cholesky decomposition. Multivariate

Gaussian distributions are widely used, and a number of parametrisations for the preci-

sion (or covariance) matrix have been previously explored, including the aforementioned

ones. When directly predicting the precision (or covariance) matrix, imposing positive

definiteness, and evaluating the log determinant, can be computationally demanding

tasks, and these parametrisations may be used to alleviate these issues.

For each parametrisation of the precision matrix, we discuss the four aspects defined in

the previous section, namely: (i) sampling, (ii) log likelihood evaluation, (iii) symmetry

and positive definiteness, and (iv) memory and computational costs.

To simplify notation, we will use r to refer to the residual images, r = x − µ. Thus,

the squared error term in equation 3.6 can be expressed in a more compact form as

(

x− µ
)T

Σ−1
(

x− µ
)

= r
T

Λr. (3.7)

Eigendecomposition

An eigendecomposition is defined as Λ = QVQT , where Q is an orthogonal matrix,

where each column is denoted as an eigenvector, and V is a diagonal matrix with

strictly positive elements in the diagonal, which are referred to as eigenvalues. The

network only needs to output the eigenvector matrix Q, and the diagonal elements of

the eigenvalue matrix V.

72

(i) The matrix M needed for sampling can be computed as:

M = QV− 1
2QT . (3.8)

As V is diagonal, V− 1
2 only involves evaluating the inverse of the square root of

each element in the diagonal.

(ii) The log likelihood evaluation is also simple to compute, the log determinant is

defined as

log(|Σ|) = −
n−1
∑

i=0

log(vii), (3.9)

where vii is the i
th diagonal element in V. The squared error term is defined as

r
T

Λr = w
T

w, (3.10)

where

w = V
1
2QT r, (3.11)

where this formulation avoids evaluating theQVQT matrix multiplications needed

to construct Λ.

(iii) As stated above, V must be positive and Q must be an orthogonal matrix to

guarantee that Λ is symmetric and positive definite. The former can be eas-

ily achieved by having the network predict the log(V), and the later with an

additional orthogonality loss:

Lortho = ‖QTQ− I‖2. (3.12)

(iv) The computational cost and memory constraints can be reduced at the cost of

employing an approximated precision matrix. This can be modelled by only

predicting the nv largest eigenvalues and their corresponding eigenvectors. If

that is the case, equation 3.11 can be evaluated from right to left using the

reduced size matrices, without explicitly building Λ, which significantly increases

the efficiency of the operation.

A significant limitation of this approach with a reduced number of eigenvectors is that

Λ is not invertible by construction, as the smallest eigenvalues are set to zero, and this

breaches the constraint that the precision matrix must be positive definite. Moreover,

the number of eigenvectors that are required to have a good model of Λ is in general too

73

large to be practical. After initial investigations, we empirically found these limitations

to be too restrictive.

Eigendecomposition with diagonal

The eigendecomposition can be extended by adding a diagonal term Λ = QVQT + aI,

where a is a positive scalar. In contrast to the previous eigendecomposition approxi-

mation, this ensures that the estimated matrices are invertible. For this method, the

additional parameter, a, can be estimated by the network or set as a hyper-parameter.

(i) Sampling can be achieved by solving the following system of equations

L
T

ǫ = u, (3.13)

for ǫ, where u ∼ N
(

0, I
)

and L is a numerically estimated Cholesky decompo-

sition LLT = QVQ
T
+ aI, which will be defined in the subsequent section. The

proof of how sampling is equivalent to solving this system is given in Section A.1.5.

(ii) The log determinant is computed as

log(|Σ|) = −2

n−1
∑

i=0

log(ℓii), (3.14)

where ℓii is the i
th diagonal element in L, and the squared error is computed as

indicated in equation 3.7.

(iii) The same positive definite constraints described in the previous section can be

employed, as the sum of positive definite matrices is positive definite, and the

inverse is also positive definite.

(iv) This approach requires significant computational and memory resources. Con-

trary to the previous approach, the matrix Λ must be explicitly constructed for

the squared error term. Additionally, a costly Cholesky decomposition must be

numerically estimated for each evaluation of the likelihood.

In practice, this method suffers from similar limitations as the previous one, where the

number of eigenvectors that are required to have a good model of Λ is in general too

large to be practical.

74

Cholesky decomposition

A Cholesky decomposition is defined as: Λ = LL
T
, where L is a lower triangular matrix,

and the covariance network only explicitly estimates the non-zero elements in L.3 It

will be shown below that all the quantities of interest can be evaluated directly from

L, i.e. without explicitly computing Λ or Σ.

(i) Sampling from Σ involves solving the triangular system of equations

L
T

ǫ = u, (3.15)

for ǫ with backwards substitution, which requires O(n2) operations. Proof of how

sampling is equivalent to solving this system is given in Section A.1.5.

(ii) Using the Cholesky decomposition, the terms in the negative log likelihood are

simple to compute. The log determinant is

log(|Σ|) = −2
n−1
∑

i=0

log(ℓii), (3.16)

where ℓii is the ith element in the diagonal of L. The reconstruction error is

defined as

r
T

Λr = w
T

w, (3.17)

where

w = L
T

r, (3.18)

where this formulation avoids evaluating the LL
T
matrix multiplication needed

to construct Λ.

(iii) By construction, the estimated precision matrix Λ is symmetric. To ensure that

it is also positive definite it is sufficient to constrain the diagonal entries of L to

be strictly positive, e.g . by having the network estimate log(ℓii) element-wise.

(iv) Estimating this matrix directly is only a feasible solution for datasets with small

dimensionality, as the number of parameters to be estimated increases quadrati-

cally with the number of pixels in x.

3 For the sake of completeness, we include a discussion of employing a Cholesky parametrisation

on the covariance matrix, Σ = MM
T

, in Section A.1.2 in the appendix. In this case, the network
estimates the non-zero elements in the lower triangular matrix M.

75

(a) Neighbourhood (b) L (c) Λ = LL
T

(d) Σ = Λ−1

Figure 3-3: Example of the sparsity patterns in the sparse Cholesky decomposition
parametrisation for a 5× 5 image. A spatial connectivity of nf = 3 is illustrated in (a),
where each circle denotes a pixel in the image and lines connecting them indicate non-
zero values between the pixel pair in L. This leads to a band-diagonal lower-triangular
Cholesky matrix L, as shown in (b). The band-diagonal precision matrix, Λ, is shown in
(c) and the resulting dense covariance matrix, Σ, in (d). The highlighted column in (b)
corresponds to the red pixel in (a). The non-zero elements in this column correspond
to the red pixel itself and its right and bottom neighbours highlighted in light blue.
Dark blue is used in (b), (c) and (d) to denote values that are zero by construction,
while yellow indicates the opposite.

3.3.3 Sparse Cholesky Decomposition

In this section we present our novel parametrisation for the precision matrix. Our

approach is based on the Cholesky decomposition that was introduced in the previous

section. We propose to reduce the computational complexity by imposing a fixed

sparsity pattern in the matrix L, and only estimate the non-zero values of the matrix via

the covariance network. This allows us to scale our method to larger resolution images.

Our fixed sparsity pattern only affects the lower-triangular part of the matrix, as the

upper-triangular part is already sparse, as per definition of the Cholesky decomposition.

A key aspect to consider is that, in general, a sparse matrix Λ, has a dense inverse

matrix, Σ = Λ−1. In practice, this means that having a sparse precision does not

prevent strong correlations between distant pixels. However, this does not apply to

the covariance matrix, as directly imposing sparsity in Σ removes the possibility of

correlations between any pair of pixels that has a zero weight in Σ.

The sparsity pattern imposed should depend on the type of data being modelled. For

image data, we propose that elements in L, denoted as ℓij , are only non-zero if i ≥ j

and i and j are neighbours in the image plane, where pixels i and j are neighbours

if a patch of size nf centred at i contains j, as shown in Fig. 3-3. As the patch is

centred on the pixel, nf is constrained to be an odd positive integer. This reduces the

76

x µ ǫ ∼ N
(

0,Λ−1
)

µ+ ǫ

L:,k Λ:,k Σ:,k

20

10

0

10

20

1000

500

0

500

1000

0.006

0.004

0.002

0.000

0.002

0.004

0.006

Figure 3-4: Demonstration of long correlations being modelled by a sparse precision
matrix, Λ. For an input image, x, a VAE learns a mean, µ, and the sparse Cholesky
factor, L, of a precision matrix Λ. A neighbourhood with size nf = 3 is highlighted by
a red square in ǫ for a single pixel, k. The reshaped column corresponding to pixel k is
shown for each matrix. In L:,k and Λ:,k the zero values are so by construction, while in
Σ:,k they are not. Long range correlations between pixels, for example the long strands
of hair, can be modelled by the covariance matrix, Σ = Λ−1, which is not necessarily
sparse.

number of non-zero elements in the matrix L to n((n2f + 1)/2), where nf ≪ n and

nf > 1.4 Per pixel, a maximum of (n2f + 1)/2 values are estimated. For example,

employing a neighbourhood of size 3, implies a maximum of 5 values per pixel in L, as

shown in Fig. 3-3a and 3-3b. Note that patch size and neighbourhood size will be used

interchangeably to refer to nf.

The capability of the covariance matrix to model strong correlations between distant

pixels, despite the sparsity imposed in the precision, is shown in Fig. 3-4. In this

example, a neighbourhood of size 3 is used. For the pixel of interest, many values in

Σ are not zero, and those with strong correlations are well beyond the neighbourhood

size. This allows modelling long range image structure, like hair.

The matrix L resulting from this sparsity pattern is both lower-triangular and band-

diagonal as shown in Fig. 3-3. This leads to a precision matrix Λ with a similar sparsity

4 The number of non-zero elements in L is further reduced, as pixels near the edge of the image
have fewer neighbours.

77

(a) Neighbourhood (b) L (c) Λ = LL
T

(d) Σ = Λ−1

Figure 3-5: Example of the dilated sparsity patterns for the sparse Cholesky decompo-
sition parametrisation. Similar to Fig 3-3. To avoid clutter, the neighbourhood in a)
is shown by reshaping a single column of L, where the element in the diagonal of L is
placed in the centre of the neighbourhood image. In this example a sparsity pattern of
nf = 5 is created by dilating by a factor of 2 a 3×3 kernel.

pattern with additional bands. Sampling, log likelihood evaluation and enforcing a

valid precision matrix follows the same procedure as in the dense approach, with the

reduced cost from using a sparse representation. Moreover, this approach is amenable

to parallelisation on the GPU, as each patch can be evaluated independently. Efficient

GPU evaluation is further discussed in Section 3.3.4.

An alternative sparsity pattern can be constructed such that the neighbouring structure

is similar to dilated convolutions [Yu and Koltun, 2015], as shown in Fig. 3-5. Dilated

convolutions have been shown to be a good approximation to large dense filters, by

stacking dilated layers with different dilation rates. In our experiments we saw only

marginal gains when using the dilated sparsity pattern. However, we believe such

dilated-like sparsity patterns might be useful for larger resolution images.

Connection to Gaussian Conditional Markov Random Fields

Our multivariate Gaussian model for each image can be interpreted as a Gaussian

conditional Markov Random Field (G-CRF) [Murphy, 2012]. A G-CRF has a log

probability defined as:

log pθ(x|z) = N
(

(Λ(z))−1
η(z) , (Λ(z))−1)

, (3.19)

∝ (η(z))
T

x− 1

2
x

T

(Λ(z))x, (3.20)

where x is a vectorised image, z is a latent vector, η(z) and Λ(z) are parametric

functions, with learnable parameters θ. The G-CRF log probability is proportional to

the log likelihood of a multivariate Gaussian distribution with mean µ = (Λ(z))−1
η(z),

78

and covariance matrix Σ = (Λ(z))−1, as denoted in equation 3.19. Therefore, the

forward model is defined as

x = (Λ(z))−1
η(z) + ǫ, (3.21)

where ǫ ∼ N
(

0, (Λ(z))−1)

. Thus, showing how to interpret our uncertainty model as

a Gaussian conditional Markov Random Field. A detailed proof of this equivalence is

provided in Section A.1.1 in the appendix.

A key difference with respect to our model is that CRF models are commonly used in

discriminative settings, where z corresponds to the input image and x are labels. In

particular, previous work has explored Gaussian conditional Markov Random Fields

for image segmentation [Jancsary et al., 2012, Chandra and Kokkinos, 2016, Chandra

et al., 2017], where z are input RGB images and x contains a semantic label per pixel. In

this setting, the models tend to generate a η(z) that is a noisy estimate of the semantic

labels, and commonly, (Λ(z))−1 corresponds to an edge aware smoothing filter, which

improves the final prediction µ, as the noise component, ǫ, is usually ignored for the

forward model.

Compared to our method, there are two limitations in the G-CRF parametrisation.

First, solving a sparse system of equations, Λµ = η, is required both during training

and inference to predict the mean decoding, µ. While, in our approach, a decoder

network directly predicts µ in a single forward pass. Second, a partition function

is needed in order to ensure that the right hand side of equation 3.20 is a valid log

probability, as this equation is used as an approximation to equation 3.19. Previous

work, either defines a pseudo-likelihood approximation [Jancsary et al., 2012], which

requires summing over the states of each node in the G-CRF, which is only tractable for

discrete data, or ignores the partition function [Chandra and Kokkinos, 2016, Chandra

et al., 2017], by setting the problem as an optimisation to find µ. In contrast, we offer

a tractable approach, in equation 3.16, to evaluate the partition function, which only

requires a sum over n elements.

An interesting property of G-CRF is the conditional independence of a pixel given a

set of other pixels. For a given pixel xi, we can separate all the other pixels into two

sets: xA, containing all pixels connected to xi, i.e. ∀p ∈ A, λip 6= 0, and xB, containing

all the pixels not connected to xi, i.e. ∀p ∈ B, λip = 0, where xS = {xp | p ∈ S} and S

is either A or B. Given this separation in two sets, the joint probability for the pixels

is factorised as

p(xi, xA, xB) = p(xi|xA)p(xA, xB). (3.22)

79

In other words, xi is conditionally independent of all pixels in the set B, given all

pixels in the set A, which can be written as p(xi|xA, xB) = p(xi|xA). A proof of this

conditional independence statement is provided in Section A.1.1 in the appendix. As

our decoder model is equivalent to a G-CRF, the same property applies to it. This

and similar Markov properties have been extensively used to model images [Murphy,

2012, Bishop, 2006]. For our model, as we only have conditional dependence between

neighbours, this means that if two distant pixels are modelled as correlated (outside

of their neighbourhood), there must be a path of correlated pixels between them, as

illustrated in Fig. 3-4.

Low Rank Sparse Cholesky Decomposition

To model larger images, the size of the neighbourhood should be increased accordingly.

Yet, the number of non zero-elements of the precision matrix increases quadratically

with the size of the neighbourhood, which is not tractable. A solution that was explored

is to reduce the dimensionality of L by approximating it with a learnable basis

L = s(BW) = s(T), (3.23)

where B is a nc ×nb dense matrix containing the basis, W is a nb ×n dense matrix of

weights, n is the number of pixels in the input image, nb is the number of basis vectors,

nc = (n2f + 1)/2 and T is a nc×n dense matrix containing the non-zero elements in L.

The operator s(·) rearranges and pads with zeroes the values in T to generate the L

matrix, and it is explained in Section A.1.3 in the appendix. For now, we note that the

diagonal of L is stored in the first row of T, i.e. ℓi,i = t0,i, where t0,i is the i
th element

in the first row of T.

Under this formulation, the covariance network output becomes W, while the basis

matrix, B, is learned at training time and it is shared for all the images. Note that

this formulation only provides savings over the previous approach if nb < nc, i.e. if the

basis is not complete.

We now turn our attention to how practical this parametrisation is:

(i) Sampling is performed with the procedure discussed in the preceding section,

which requires solving a sparse system of equations.

(ii) The reconstruction error, r
T
Λr, is also computed as in the above section. The

80

log determinant term can be evaluated as

log(|Σ|) = −2
n−1
∑

j=0

log (t0,j) . (3.24)

(iii) Ensuring that the estimated precision matrix is positive definite and symmetric

requires constraining W and b0,j to be positive, where b0,j is the jth element in

the first row of B. We achieve this by directly predicting log values for that row.

(iv) The computational complexity is O(nc nb + nb n). This is tractable if nb ≪ n

and nf ≪ n, in other words, the growth is linear in the number of pixels.

Experimentally, we saw only marginal gains when using either the basis, or the dilated

sparsity pattern with the basis. However, the basis might be useful when using sparsity

patterns with larger neighbourhood size, nf, or image size, n.

This approach is equivalent to not using a basis if nb = nc and B = I. In this case, the

log determinant evaluation is simplified to

log(|Σ|) = −2

n−1
∑

j=0

log (w0,j) , (3.25)

where w0,j is the jth element in the first row of W . The positive definite constraint

is fulfilled if the first row of W is positive, which again is achieved by predicting log

values. As there will be benefits in employing this basis formulation, even with a fixed

matrix B = I, we will continue to use it in the following sections.

3.3.4 Efficiency

Two assumptions, which limit the applicability of the method have been made through

this chapter. The first consists of limiting the input to be grey-scale images, and the

second is the assumption that the deep learning framework of choice supports sparse

matrix operations.

In this section we present an approximation to be able to model multivariate Gaussian

distributions for colour images with the same parameter budget as for grey-scale images.

Subsequently, we describe a tractable implementation of our model in terms of dense

matrix operations, which is amenable to parallelisation on the GPU.

81

x µ ǫreal x µ ǫreal

R

− 2

− 1

0

1

2

Y

− 2

− 1

0

1

2

G

− 2

− 1

0

1

2

Cb

− 2

− 1

0

1

2

B

− 2

− 1

0

1

2

Cr

− 2

− 1

0

1

2

Figure 3-6: Input, x, reconstructions, µ, and residuals, ǫreal = x − µ, in RGB and
YCbCr colour spaces for a VAE with diagonal covariance trained with RGB images.
In RGB space all the channels contain highly structured residuals, and in each channel
the residual has a similar magnitude. In the YCbCr space the Cb and Cr residuals
have lower magnitude than the Y channel residual.

Colour images

We present a structured uncertainty approach that can model colour images with a

minimal increment in the number of parameters over modelling grey-scale images. To

achieve this, we first observe that in a luminance colour space, such as YCbCr, the

high-frequency details of the image are mostly encoded in the luminance channel, Y.

This fact has been used by image compression algorithms like JPEG, where the colour

channels Cb and Cr are spatially quantised with minimal loss of quality in the result-

ing images [Wallace, 1992]. As previously described, VAEs struggle to model high-

frequency details, leading to highly structured residuals for the luminance channel, in

contrast the Cb and Cr, which are smooth by nature, are easier for the VAE to model,

leading to lower amplitude residuals, as shown in Fig. 3-6.

Therefore, we propose to model each YCbCr channel independently:

pθ(x | z) = pθ(xY | z)pθ(xCb | z)pθ(xCr | z), (3.26)

where xY, xCb, xCr denote the Y, Cb and Cr channels in x.

The luminance channel is modelled using a structured Gaussian likelihood, while the

82

remaining channels use factorised Gaussian likelihoods

pθ(xY | z) = N
(

µY(z),Σ(z)
)

, (3.27)

pθ(xCb | z) = N
(

µCb(z),σ
2
Cb(z) I

)

, (3.28)

pθ(xCr | z) = N
(

µCr(z),σ
2
Cr(z) I

)

, (3.29)

where µY(z), Σ(z), µCb(z), σ
2
Cb(z), µCr(z), σ

2
Cr(z) are non-linear functions of the

latent variable z, which are implemented as neural networks. A common decoder is

used as a backbone, which leads to sharing most of the network parameters. Each

output only adds a single layer to the decoder at the corresponding image resolution.

Many datasets contain images compressed in JPEG, and as aforementioned this format

spatially quantizes the Cb and Cr channels. Usually, during the JPEG encoding the Cb

and Cr channels are downsampled to half of the image resolution. Thus, JPEG decoders

upsample these channels back to the original resolution. The loss of information due the

downsampling/upsampling process can be problematic. The colour channels contain

less information than the luminance one, so they should be treated differently. In order

to equalise the amount of information per pixel across channels, the Cb and Cr channels

are downsampled to the same resolution that was used for the JPEG encoding.

GPU Implementation

Our approach can be implemented efficiently in modern GPU architectures with frame-

works that lack support for sparse tensor operations. We use the low rank sparse

Cholesky decomposition discussed in the previous section. For the likelihood evalua-

tion, we reformulate the squared error term in the log likelihood as a 2D convolution

operation, as shown in Fig. 3-7. Our solution for drawing random samples tractably

from the distribution is based on a hybrid GPU/CPU approach.

For the likelihood evaluation, a reshape operator f(·) is defined, which does the reverse

of vectorisation. This is required as the 2D convolution is evaluated in image space,

i.e. before vectorising the inputs images, which have an image height and width of nh

and nw respectively. The operator, f(·), reshapes its input to nh × nw × c where c is a

variable number of channels depending on the input size. Thus, the dimensionality of

the input to the reshape operator must be a multiple of the number of pixels, n = nhnw.

83

Figure 3-7: Tractable GPU evaluation of r
T
Λr using the dense matrix representation

of B and W, where r is the residual, f(·) and g(·) are reshape operators defined in
the text. Firstly, the operation f(r

T
) ∗ g(B) is evaluated, where the residual image,

f(r
T
), is convolved with the basis kernels, g(B). Secondly, the tensor resulting from the

convolution is linearly combined with the weights f(W), where ⊗ denotes element-wise
multiply and summing over the channel dimension. Thirdly, a vector-vector multipli-
cation (r

T
L)

T
(r

T
L) is needed to get the final value.

The squared error term, equation 3.7, in the likelihood is defined as

r
T

Λr = r
T

LL
T

r (3.30)

where

r
T

L = f−1
((

f
(

r
T
)

∗ g(B)
)

⊗ f(W)
)

, (3.31)

where g(·) is a reshape and zero pad operator to nf×nf×nb, which is described in more

detail below, ∗ denotes 2D convolution, ⊗ is a linear combination operator, which does

element-wise multiply and sums over nb, the channel dimension. Thus, this operation

can be directly evaluated using the dense matrices B and W.

In more detail, the weights matrix, W, is reshaped to a nh ×nw ×nb tensor by f(W),

and the residual, f(r
T
), has a shape of nh × nw × 1. Each column in B corresponds to

an individual kernel of size nf × nf for the convolution operation. For example, for a

nf = 3 and nb = 2, the basis matrix is defined as

B =

b0,0 b0,1

b1,0 b1,1

b2,0 b2,1

b3,0 b3,1

b4,0 b4,1

. (3.32)

84

The reshape and zero pad operation, g, leads to a 3× 3× 2 tensor

g(B) =

0 0 0

0 b0,0 b1,0

b2,0 b3,0 b4,0

,

0 0 0

0 b0,1 b1,1

b2,1 b3,1 b4,1

. (3.33)

The log determinant term in the log likelihood does not require any modifications.

Therefore, it is evaluated as described in equation 3.24, or using the simplified version

of equation 3.25, if no basis matrix is used, i.e. B = I.

In practice, this approach is implemented in a fully convolutional fashion, where the

network directly outputs a nh × nw × nc tensor which corresponds to f(W), and an-

other of shape nh × nw × 1 for f(µ). Therefore, the only reshape operators used in

equation 3.31 are f−1(·), which vectorises the input tensor from nh × nw × 1 to n, and

g(·). The log determinant evaluation of equation 3.24 also requires using f−1(·), while
the simplified one in equation 3.25 can be stated in terms of f(W) as

log(|Σ|) = −2

nh−1
∑

i=0

nw−1
∑

j=0

log (f(W)i,j,0) . (3.34)

Interestingly, for the case B = I, the convolution operation corresponds to shifting the

image in an axis-aligned manner, where the shift is constrained to be an integer for

each dimension. An example of this shifting is shown in Section A.1.4 in the appendix.

The sampling operation, as described in equation 3.15, can be problematic in frame-

works that do not support sparse tensors, and sparse system of equations solvers.

However, as sampling is only required at inference time, this allows for hybrid solu-

tions, such as evaluating T on GPU, and efficiently solving the system on CPU with

an off-the-self sparse solver.

3.3.5 Priors

As our generative model estimates both a mean and a precision matrix per input image,

we must employ some regularisation to avoid poor solutions. Intuitively these poor

solutions arise from the underconstrained nature of the problem, as the VAE network

is tasked with estimating the parameters of a multivariate Gaussian distribution given

a single data sample, the input image.

85

Input µ ǫ µ+ ǫ

Figure 3-8: Example of a reconstruction from a VAE trained with a multivari-
ate Gaussian distribution with our sparse Cholesky decomposition approach, i.e.
p(x|z) = N

(

µ,Λ−1
)

, where Λ = LL
T
. If trained without any regularisation, the image

content is mostly modelled on the residuals, ǫ. Thus, producing means, µ, which do
not resemble the input image.

The estimated variance should be lower bounded by the acquisition noise in the data,

i.e. the lower bound is proportional to the expected noise in the images. Intuitively, for

images this usually entails that little variance is expected on the predicted covariance

matrix, i.e. the model should be certain about its predicted mean at any given pixel,

assuming a complex enough model. Experimentally, we found that without any regu-

larisation a randomly initialised network has a tendency to model most of the image

content in the precision matrix, Λ, rather than in the mean, µ, as shown in Fig. 3-8,

which is undesirable. Another issue is the prediction of spurious correlations, which

are not well supported by the data, but arise from only having a single residual sample

per image.

Following a Bayesian route, we explore the addition of a prior distribution over the

predicted parameters of the multivariate Gaussian distribution. For an input image, x,

an informative prior for the predicted mean, µ, would be centred on the input image

itself. Therefore, we lack a good prior for the mean, as priors do not have access to the

input data. Instead, we focus on adding a prior on the predicted precision matrix, Λ.

Accordingly, the variational bound of the VAE is augmented to

L = LVAE + Ez∼qφ(z |x) [log pθ(Λ | z)] , (3.35)

where pθ(Λ | z) is the prior distribution over the estimated matrices, Λ = LL
T
. Note

that this addition does not transform Λ (nor L) into a random variable, i.e. a distribu-

tion over Λ (or L) matrices is not being estimated. Therefore, samples are not drawn

from the pθ(Λ | z) distribution, only the probability density function of the distribution

is evaluated in the above equation. To simplify notation, the dependency on θ and z

is dropped for the remainder of this section, i.e. p(Λ) is used to denote pθ(Λ | z).

We consider four different prior distributions: a Wishart distribution, a Cholesky-

86

Wishart distribution, a Sparse Cholesky-Wishart distribution, and a combination

of Gamma-Gaussian distributions.

Wishart distribution

A common prior used for covariance matrices is the inverse Wishart distribution, as

this is a conjugate prior for the covariance matrix of a Gaussian distribution. In our

case, as we are working with precision matrices, Λ, we use a Wishart distribution over

precision matrices.

The probability density function of a Wishart distribution is defined as

p(Λ) =W (Λ|V, p) = 1

2pn/2|V|p/2Γn
(p
2

) |Λ|(p−n−1)/2e−(1/2)tr(V−1Λ) (3.36)

where the normalisation factor, Γn, is a multivariate Gamma function defined as

Γn

(p

2

)

= πn(n−1)/4
n
∏

j=1

Γ

(

p

2
− j − 1

2

)

, (3.37)

Γ(a) =

∫ ∞

0
ta−1e−tdt, (3.38)

where Γ(·) is known as the Gamma function, n denotes the dimensionality of Λ, i.e.

Λ is a n×n matrix, V is a n×n scale matrix, and p is a scalar defining the degrees of

freedom of the distribution. The density function is only defined for symmetric positive

definite matrices, Λ and V. The degrees of freedom parameter is constrained to p ≥ n,

with p = n being an uninformative prior, and larger values being more informative.

This approach seems to require access to the precision matrix, Λ, while we only have

tractable access to the Cholesky matrix, L. However, the probability density function,

equation 3.36, can be re-written using the Cholesky factors L, as will be shown in

equation 3.42.

From that definition, all the terms can be efficiently computed as long as the scale

matrix, V, is diagonal. Luckily, this is the case, as a preference for removing spurious

correlations, and having little noise in the data corresponds to a diagonal covariance

matrix Σ0 = κ2I, where κ2 is a scalar with the expected noise variance. As the prior

will be used in an optimisation setting, it will push the precision matrices predicted by

the covariance network towards the mode of the prior.

87

The mode of the Wishart distribution is defined as

Λmode = (p− n− 1)V, (3.39)

which is only valid for p ≥ n+1. Therefore, the scale matrix that encourages generating

Λ matrices that produce diagonal covariance matrices, Σ0 = κ2I, is defined as

V =
1

(p− n− 1)κ2
I. (3.40)

A prior with a scaled identity matrix, such as this one, which expects little noise in

the data, is intended to force the network to model most of the image content in

the means, µ. However, as there is only a single image per learned distribution, the

estimated precision matrix might be close to singular, which would lead to probability

density functions that are not well behaved, leading to flawed solutions. This issue

might arise in either p(Λ) =W (V, p) or p(x|z) = N
(

µ,Λ−1
)

, as the precision matrix

appears in both distributions.

Implementation details on how to efficiently evaluate equation 3.36 using our dense

basis representation, BW, can be found in Section A.1.9 in the appendix.

Cholesky-Wishart distribution

In this section we provide a distribution over Cholesky matrices L, which is partly based

on the work by [Dillon et al., 2017]. This is more consistent with our method, than

using a Wishart distribution over precision matrices, as it is a prior on the parameters

that are estimated, L, rather than on a function of them Λ = LL
T
.

A change of variables q(L) = Λ = LL
T
and L = q−1(Λ) is applied on the Wishart dis-

tribution, which leads to the Cholesky-Wishart distribution, with a probability density

function defined by

p(L) =W c(L|V, p) =W (q(L)|V, p)
∣

∣

∣

∣

∂(q(L))

∂L

∣

∣

∣

∣

=W (LL
T |V, p)

∣

∣

∣

∣

∣

∂(LL
T
)

∂L

∣

∣

∣

∣

∣

. (3.41)

Replacing the precision matrix, Λ, for its Cholesky factors, LL
T
, in equation 3.36 leads

to

W (LL
T |V, p) = 1

2pn/2|V|p/2Γn
(p
2

) |L|(p−n−1)e−(1/2)tr(V−1LL
T
), (3.42)

88

and the second term is equivalent to

∣

∣

∣

∣

∣

∂(LL
T
)

∂L

∣

∣

∣

∣

∣

= 2n
n−1
∏

i=0

ℓn−ii,i . (3.43)

This distribution has similar computational costs as the Wishart distribution, as the

additional term in equation 3.43, only involves the diagonal values of the L matrix,

which are also used in the log determinant in equation 3.16. A derivation of the

Cholesky-Wishart distribution can be found in Section A.1.9 in the appendix.

As we maintain the preference for a diagonal covariance matrix, Σmode = κ2I in the

prior, we proceed to define how to set the scale matrix to pursue this objective. First,

we inspect the mode of the distribution, which for a diagonal V matrix is defined as

λ̂i,i = vi,i

(

i(1− n)

n− 1
+ p− 1

)

, (3.44)

λ̂i,j = 0, ∀i, j s.t. i 6= j and j < i, (3.45)

where λ̂i,i and λ̂i,j are the diagonal and off-diagonal elements of Λmode, and vi,i denotes

the ith element in the diagonal of V. Therefore, the diagonal scale matrix, V, must be

set to

vi,i =
κ−2(n− 1)

i(1− n) + (n− 1)(p− 1)
, (3.46)

where κ is a scalar with the expected noise standard deviation. A proof that the result

presented above is indeed the mode of the distribution can be found in Sections A.1.6

and A.1.10 in the appendix.

Both the Wishart and Cholesky-Wishart distribution define the probability density

function over dense precision matrices, Λ, and lower triangular matrices, L, respec-

tively. As we have sparse lower triangular matrices, this implies adding a constant

term proportional to the number of zero elements. This could be numerically problem-

atic for the optimisation, and complicates model comparison. Therefore, we proceed

to derive a prior distribution that accounts for the sparsity pattern in the Cholesky

matrix, L.

89

Gamma-Gaussian distribution

The Cholesky-Wishart distribution (for a lower triangular matrix L and a diagonal

scale matrix V) is equivalent to a square root Gamma distribution for the diagonal

values in the Cholesky matrix and a Gaussian for the off-diagonal ones

p(L) =W c(L|V, p) =
∏

i

p(ℓi,i|V, p)
∏

i,j

p(ℓi,j |V, p), (3.47)

p(ℓi,i|V, p) = Ga
1
2

(

0.5

(

i(1− n)

n− 1
+ p

)

,
0.5

vi,i

)

, (3.48)

p(ℓi,j |V, p) = N
(

0, vi,i
)

, ∀i, j s.t. i 6= j and j < i, (3.49)

where i ∈ [0, 1, · · · , n − 1], vi,i denotes the ith element in the diagonal of V, and

p(ℓi,j) is only evaluated for the non-zero off-diagonal elements in L. This equivalence

is proved in Section A.1.6 in the appendix. The square root Gamma distribution arises

from applying a change of variables in the Gamma distribution as demonstrated in

Section A.1.7, where the shape and rate parametrisation is used. Moreover, the square

root Gamma distribution is equivalent to the Nakagami distribution [Nakagami, 1960]

and the chi distribution. Henceforth, we refer to this combined distribution as the

Gamma-Gaussian distribution.

As discussed in Section A.1.6, the equivalence between the Cholesky-Wishart and the

Gamma-Gaussian distribution only holds for diagonal scale matrices, V, which was

the case considered in the previous section. Therefore, the result for the mode of the

distribution, equations 3.44 and 3.45, and for the scale parameter, equation 3.46, can

be directly used in the Gamma-Gaussian distribution.

There are several advantages of the Gamma-Gaussian approach, with respect to the

Wishart or Cholesky-Wishart distributions. The likelihood is easier to evaluate, as the

distributions have simpler probability density functions. Moreover, this approach only

evaluates the likelihood for the parameters that are defined under the model, i.e. it is

aware about the sparsity pattern in L.

For completeness, a Cholesky-Wishart distribution, which is equivalent to the Gamma-

Gaussian approach for sparse matrices L is defined below.

90

Sparse Cholesky-Wishart distribution

As discussed above, the Cholesky-Wishart distribution evaluates the probability for all

the elements in the lower triangular part of L. Under the Gamma-Gaussian prior the

likelihood for the zero elements is not evaluated. However, if it were, the likelihood for

those elements would be a constant, as by construction the elements are constrained to

be zero. Therefore, by removing the likelihood terms corresponding to those elements

from the Cholesky-Wishart density function, a new distribution which accounts only

for the non-zero elements can be defined. Formally we denote this distribution as the

sparse Cholesky-Wishart, and it is defined by the following probability density function

p(L) =W c
sp(L |V, p) = W c(L |V, p)

∏

ℓi,j∈K
N
(

0 | 0, vi,i
) , (3.50)

whereK is the set of elements that are zero by construction in the lower-triangular part

of L. Note that when evaluating the probability density function of this distribution, the

denominator is a constant.5 The Sparse Cholesky-Wishart distribution is only defined

for diagonal scale matrices, V, as the equivalence between the Gamma-Gaussian and

the Cholesky-Wishart only holds for that choice of hyper-parameters.

Discussion of the prior distributions

The aforementioned approaches for learning multivariate Gaussian distributions proved

to be challenging in practice. For any values of the hyper-parameters in the priors, p

andV, we found that the optimisation was dominated by the cost of the prior due to the

number of covariance parameters being estimated. Both the sparse Cholesky-Wishart

and the Gamma-Gaussian priors made the learned precision matrices too strongly

diagonal, and compared to a model without any regularisation, the improvements on

the predicted means were minor.

Intuitively, the number of parameters in the precision matrix, Λ, is much larger than

the number of parameters in the means, µ. For example, there are a maximum of five

parameters per pixel in L for a 3× 3 neighbourhood in a grey-scale image. In general,

this indicates that a prior on the precision would have a larger weight than one on the

5 N
(

0 | 0, vi,i
)

is the probability density function of a normal distribution with zero mean and vi,i
variance, evaluated at 0. Hence, it can be evaluated as:

N
(

0 | 0, vi,i
)

=
1

√
vi,i

√
2π

e
− 1

2

(

0−0√
vi,i

)

= (2πvi,i)
− 1

2 .

91

means. An uninformative prior has roughly a uniform high cost regardless of the values

in L. An informative one has a low cost for values that agree with the prior, and a

potentially very high cost for values that disagree. Therefore, the prior must cover well

the desired distribution of covariance matrices, which is unknown, and be informative

enough to avoid dominating the cost of the optimisation.

A clarifying example of how informative the prior would need to be, can be illustrated

for the Wishart distribution. In our case a neural network, which amortises different

observations over a dataset, is used; yet, for this example, a standard estimator is

assumed for simplicity. The degrees of freedom hyper-parameter, p, indicates how

informative the prior distribution is, and it has been interpreted as indicating that p

precision matrices were observed [Gelman and Hill, 2007, Lunn et al., 2012]. In our

case, only a single residual is observed, which would imply a value of p < 1 for the

prior, as several residual images are needed to accurately estimate a single precision

matrix. Unfortunately, the distribution is not well defined if p < n, as samples from

the distribution are no longer constrained to be positive definite matrices.

A principled approach to learn the parameters of the prior distribution is to employ a

hierarchical model with hyper-priors. However, this would entail adding an additional

network to predict the parameters from the latent representation. Moreover, it is known

that deep hierarchical models are difficult to train [Neal, 2012].

3.3.6 Regularised precision matrix estimation

In the previous section regularisation techniques based on prior distributions were dis-

cussed, which proved to be challenging in practice. Two alternative approaches for

regularising the estimation of precision matrices are proposed in this section. These

methods are not as principled as the priors, yet, empirically they were found to work

well.

Independent parameter estimation (IPE)

In this method we propose to learn the distribution in two separate steps, as shown in

Fig. 3-9. In the first step, the model is trained with a factorised Gaussian likelihood

until convergence. This ensures that the decoder network learns to model the image

as closely as possible on the means, µ. In the second step, the covariance network is

trained with the rest of the model fixed, i.e. the “Encoder” and “µ-Decoder” remain

92

Figure 3-9: Structured uncertainty prediction in two steps. First, in a VAE, µ and z
are learned using a factorised Gaussian likelihood. Second, the encoder (highlighted in
red) and the µ-decoder (highlighted in blue) are fixed, and the L-decoder (highlighted
in green) is learned by maximum likelihood estimation.

fixed in Fig. 3-9. In practice, this entails removing the layer that is used as output for

the factorised covariance matrix estimation in the first step, and replacing it with our

sparse Cholesky model.

In most VAE architectures the decoder shares features for both the means and the

factorised covariance prediction, which limits the covariance network to only fine tune

the final layers exclusively responsible for the covariance prediction. Moreover, the

features learned by the shared decoder network usually lead to unstable learning for

our approach. A simple solution consists of adding a full decoder for the covariance

prediction, which does not share any features with the means prediction network, as

shown in Fig. 3-9. Although this approach requires more parameters to be learned, its

main advantage is that the covariance network can be applied to any black box method

that outputs the mean of a Gaussian distribution.

Shared decoder with regularisation (SDR)

We also propose an alternative approach, which consists of adding two regulariser

functions to the VAE loss. Thus, it enables learning in the covariance network with

shared parameters with the µ-Decoder, as shown in Fig. 3-10. This also means that

the encoder receives gradients from the uncertainty prediction part of the network.

We empirically obtained good results with a mean squared error term and an L1 reg-

ulariser for the off-diagonal elements in L. Both of these terms are intended to ap-

proximate the effect of an informative prior, such as an automatic relevance determi-

93

Figure 3-10: Structured uncertainty prediction with shared features on the decoder.
The VAE decoder is augmented to use a structured Gaussian likelihood. In order to
avoid over fitting due to the covariance network, L, the regularised loss function from
equation 3.51 is used.

nation [Mackay, 1995]. The model maximises the following objective

L = LVAE − α‖x− µ‖22 − γ
∑

i,j∈K

|ℓi,j |. (3.51)

where α and γ are scalar hyper-parameters and K is the set of elements that are not

zero by construction in the lower-triangular part of L. The α term ensures that most

of the image content is modelled on the means, while the γ term is helpful in removing

spurious correlations.

The L1 regulariser can be computed using the dense basis approach as

γ
∑

i,j∈K

|ℓi,j | = γ

nc−1
∑

i=1

n−1
∑

j=0

|ti,j |, (3.52)

where ti,j is a single element in T.

We found it beneficial to anneal the α weight, which is set initially to a large value. This

ensures that the network learns to model the data on the µ, as the variance minimiser

term dominates the optimisation. The weight is subsequently lowered, allowing the

model to learn meaningful correlations as the objective switches to being dominated

by the variational lower bound, LV AE .

94

3.4 Results

In this section we evaluate the two methods described in the section above. As the

independent parameter estimation (IPE) approach is more restricted than the

shared decoder with regularisation (SDR) method, we evaluate the former first

on a set of synthetic tasks. This is followed by a comparison of both methods on real

data, and an empirical justification of the design decisions taken in this chapter. We

proceed by comparing the SDR method to factorised VAEs on two datasets. Next,

additional results of the SDR approach that give some insights into the model are

provided. Finally, denoising is shown as an example application of our structured

uncertainty prediction approach.

3.4.1 Implementation details

Independent parameter estimation (IPE)

The IPE model is evaluated on two custom-made synthetic datasets to demonstrate

the capability of the model to accurately describe known residual distributions. We

also demonstrate our model on grey-scale cropped face images from the CelebA [Liu

et al., 2015] dataset for sampling high frequency details to improve reconstructions. We

show some examples of image denoising that takes advantage of the predicted precision

matrix to better preserve structure in the denoised image.

All our models are implemented in the TensorFlow [Abadi et al., 2015] framework

and they are trained on a single Titan X GPU using the Adam [Kingma and Ba, 2015]

optimizer. Unless otherwise stated, the input data for all the experiments is normalised

to the range [−1, 1]. Additional implementation details are given in each section, and

in appendix A.2.1.

Shared decoder with regularisation (SDR)

The SDR model is evaluated on the CelebA [Liu et al., 2015] and LSUN Outdoor

Churches [Yu et al., 2015] datasets. The models are trained on the YCbCr colour

space for both datasets, and also using only the Y channel (grey-scale) for CelebA. This

approach is used to demonstrate that learning the residual distribution on colour images

only incurs in a minimal increase in the number of parameters, with respect to learning

the residual distribution on grey-scale images. Moreover, we show that this model

95

can achieve similar results as the IPE method with a much smaller parameter budget.

Additional implementation details for the experiments can be found in appendix A.2.2.

Baselines

Factorised VAEs Two factorisations are tested for VAEs, a spherical covariance for

both the Y, Cb and Cr channels, denoted as VAE (Sph), and a diagonal covariance for

Y and spherical covariance for Cb and Cr, denoted VAE (Diag). Employing different

noise models for the different channels in the image is justified by the asymmetry in

the amount of information that they contain, as discussed in Section 3.3.4. For the

experiments employing grey-scale images, the Cb and Cr channels are not used to

trained the networks.

β-VAE We found that VAEs with a diagonal Gaussian likelihood overfitted to the

reconstruction error, thus neglecting the KL term for the prior on the latent space,

which in turn produces low quality samples. β-VAE [Higgins et al., 2017] addresses

this issue by increasing the weight of the KL term in the log likelihood. Therefore, we

also show results using this model with a factorised Gaussian likelihood.

3.4.2 Synthetic datasets

The goal of the two synthetic experiments is to evaluate the feasibility of training a

covariance network to accurately estimate the residual distribution, where the true

mean and covariance matrix are available for validation purposes.

Since the goal here is to evaluate the covariance prediction network, we simplify these

experiments by bypassing the use of a generative model, and directly predicting Σ from

µ, the noise free data. This means that the input to our covariance prediction network

is µ.

Both datasets are constructed by generating a set of µ, and then adding a random

sample of correlated noise to them: x ∼ N (µ,Σ(µ)), where Σ(µ) is a predefined

function of µ. Therefore, the added noise is dependent on the structure of the mean,

which imitates the situation on real data. This also reflects the main assumption of

our model: that there is sufficient information in the latent variables z (or in µ for the

synthetic experiments) to estimate the residual distribution Σ. Each dataset contains

35,000 training examples and 1,000 test examples.

96

(a) Prototype covari-
ance matrix, Σproto.

(b) Example co-
variance matrix, Σ,
which is built using
equation 3.53.

(c) Example mean µ. (d) Example spline,
x = µ + ǫ, where
ǫ ∼ N

(

0,Σ
)

.

Figure 3-11: The splines dataset is synthesised using a prototype covariance matrix (a),
that is transformed to generate a number of example covariances (b), where each trans-
formation is a function of a different spline (c). Each example (d) in the dataset
is constructed by taking a single sample from a covariance (b) and adding it to the
corresponding spline (c).

We emphasise that despite the true covariance matrices being known for these synthetic

experiments, we do not use them for training. We train the prediction network using

the objective in equation 3.6, which makes no use of the true covariance and mimics

the situation with real datasets.

Splines

The first synthetic dataset is composed of 1-D splines, i.e. one dimensional signals,

with 50 points per example, as shown in Fig. 3-11d. Each spline is comprised of a

low frequency component and a correlated high-frequency one. The high-frequency

component is produced by a unique covariance matrix per example, that is generated

by a deterministic function that takes as input the low-frequency signal. In more

detail, given a predefined prototype covariance matrix, Σproto (shown in Fig. 3-11a),

the covariance matrix, Σ, for a particular example is constructed as

σi,j = σprotoi,j |µi|. (3.53)

This corresponds to scaling each row by the corresponding low frequency component,

as shown in Fig. 3-11b.

Finally, a single random sample is drawn from the example covariance matrix and added

to the mean µ, which generates the final example x = µ + ǫ, as shown in Fig. 3-11d.

Therefore, there is a single example, x, for each unique covariance matrix, Σ, which

97

µ µ+ ǫreal µ+ ǫσ µ+ ǫΣ

0 20 40

0

5

0 20 40

0

5

0 20 40

0

5

0 20 40

0

5

0 20 40

0.0

2.5

0 20 40

0

5

0 20 40

0

5

0 20 40

0

5

Figure 3-12: Reconstructions with samples from the estimated covariance matrix. Each
row corresponds to a different spline on the test dataset. The first column contains
the smooth mean, µ, the second shows the spline after adding the sample from the
ground truth covariance matrix, µ+ ǫreal. The third and fourth columns show samples
from the diagonal covariance and a dense covariance model. For easier comparisons, in
the third and fourth columns the ground truth spline, depicted in blue, is copied from
the second column, and the estimated one is shown in orange. The high-frequency
component from the dense covariance model seems more correlated than the one from
the diagonal model.

replicates the situation on real data.

The covariance prediction network is a multi-layer perceptron (MLP) with two layers

of 100 units with ReLU activations and batch normalisation [Ioffe and Szegedy, 2015],

and a final layer with 1275 units without an activation function. The final layer di-

rectly outputs the lower triangular part of the matrix L, after applying an exponential

activation to the diagonal elements. This network does not use our proposed sparse

Cholesky decomposition, rather a dense Cholesky matrix is estimated. A dense ma-

trix prediction is manageable in this setting due to the low dimensionality of the data.

The diagonal covariance baseline has a similar architecture, with a final layer with 50

units, which correspond to the diagonal elements in Λ. The models are trained with

a learning rate of 1e-4 for 200 epochs. Additional implementation details are given in

appendix A.2.1.

Reconstructions for this dataset are obtained by adding a sample from predicted Σ

to µ. We show results for reconstructions in Fig. 3-12, for the diagonal and dense

covariance model. The dense covariance model is able to add a plausible high-frequency

component to the input µ. The high-frequency component added by the diagonal

covariance approach seems less correlated, which is an indication of its inability to

accurately model the ground truth covariance distribution.

98

− log p(x |Σ(µ)) KL ‖Σ(µ)−Σgt‖2
Ground
truth

18.65 ± 0.75 - -

Diagonal
model

42.64 ± 0.83 72.06 ± 0.30 3.81 ± 1.21

Ours 21.12 ± 0.79 3.56 ± 0.18 1.26 ± 0.74

Table 3.1: Quantitative comparison of reconstructions on the splines dataset. KL
denotes the KL divergence DKL(N

(

0,Σ(µ)
)

|| N
(

0,Σgt

)

), where Σgt is the ground
truth covariance matrix, and Σ(µ) is the estimated covariance. Our model obtains
significant improvements under all metrics over a diagonal covariance model.

Ground Truth Estimated Ground Truth Estimated

Figure 3-13: Estimated covariance matrices for the spline dataset. Left, the ground
truth and estimated covariance matrix for a spline example on the test set, right, the
corresponding matrices for a different example. Our model is able to learn the variations
in the structured residual distributions.

Quantitative results are presented in Table 3.1. We compare with an uncertainty model

that only estimates a diagonal covariance matrix. As the ground truth covariances

contain off-diagonal structure, the diagonal covariance model is bound to fail in repre-

senting it. Our model achieves a negative log likelihood similar to the one evaluated

using the real covariance matrices.

As we have access to the ground truth covariance matrix of each test example, we can

directly compare the estimated matrix with the ground truth one. We show qualitative

results in Fig. 3-13. Note how the model is able to recover most of the off-diagonal

structure in the covariance matrix.

Ellipses

The second synthetic dataset was built to evaluate the covariance prediction network

for images and to highlight the limitations of estimating a dense matrix L.

99

µ µ+ ǫreal µ+ ǫσ µ+ ǫΣ

Figure 3-14: Reconstructions from the diagonal model and from our approach. From
left to right: input µ, original x, and reconstructions using a sample from the learned
residual distribution. The diagonal approach, µ + ǫσ, is limited to produce salt and
pepper noise, while our dense covariance method, µ+ǫΣ, learns how the noise depends
on the rotation angle of the ellipse.

We generate a dataset of synthetic grey-scale 16 × 16 images. For each example, the

mean image contains an ellipse with random width, height, position and rotation angle.

The prototype covariance matrix for this dataset generates lines and is rotated by the

same random rotation angle that was used for the ellipse, thus generating random lines

that are aligned with the ellipse.

For this dataset, estimating directly a dense Cholesky matrix L requires 32,896 values

per image. Even at this limited image size we were unable to train a dense prediction

model, as training was too unstable due to the high number of parameters. Instead, we

use the sparse Cholesky model defined in Section 3.3.2, with a neighbourhood of size

5 × 5, which only requires 3,328 values per image. The diagonal covariance baseline

has a similar architecture, with a final layer that only predicts the diagonal elements

in Λ. The models are trained for 200 epochs with a learning rate of 1e-3. Additional

implementation details are given in appendix A.2.1.

Reconstructions on the test set are shown in Fig. 3-14, where we show results of taking

a sample from Σ which is added to µ for a diagonal covariance model and our sparse

Cholesky method. The diagonal covariance method fails to model the structured nature

of the residuals. In contrast, the covariance prediction network from our approach is

successful in mapping the uncertainty distribution from the mean, µ. The samples

from this dense covariance matrix exhibit high-frequency detail that matches the true

residual.

A quantitative comparison with a diagonal Gaussian model is presented in Table 3.2.

100

− log p(x |Σ(µ)) KL ‖Σ(µ)−Σgt‖2
Ground truth –286 ± 2.8 − −
Diagonal model –149 ± 30.8 743 ± 38.1 1.80 ± 0.21

Ours –259 ± 2.7 113 ± 2.6 1.06 ± 0.34

Table 3.2: Quantitative comparison on the ellipses dataset (see Table 3.1 for a descrip-
tion of the metrics). Our model is able to better model the real covariance matrices
with its more complex uncertainty distribution than a diagonal model.

Ground Truth Estimated Ground Truth Estimated

Figure 3-15: Covariance matrices estimated by our model, where we show the ground
truth covariance and the prediction from our model for two examples in the test set.
Much of the structure of the real covariance matrices is recovered.

Our model achieves a negative log likelihood similar to the one evaluated using the

real covariance matrices. This shows that the method is not over-fitting to the training

data, and thus, it is able to generalise to test images.

Examples of ground truth and estimated covariances are shown in Fig. 3-15 and illus-

trate the accuracy of the covariance prediction network. The covariance structure for

this model is more complex than the one for the splines, and yet the model is still able

to recover it effectively with our sparse estimation of the Cholesky matrix.

3.4.3 Ablation studies

In this section the efficacy of the different parts of the model, and the assumptions

made in this chapter are empirically tested by means of ablation studies. Namely:

1. evaluating models trained on RGB and YCbCr colour spaces,

2. comparing the IPE and SDR models,

3. demonstrating the need for the regularised IPE and SDR approaches.

For each of the aforementioned items, quantitative and qualitative results are presented

101

as required.

Implementation details

All the ablation studies are evaluated using CelebA [Liu et al., 2015], a dataset with

real images, where the ground truth covariance matrices for the structured residual

distributions are unknown. The aligned and cropped version of the dataset is used,

where a further cropping and resizing to 64× 64 is performed. The dataset consists of

202,599 images of faces, which we split into 182,637 for training and 19,962 for testing

as recommended by the authors.

The images are converted to YCbCr colour space, and the Cb and Cr channels are

blurred and downsampled to 16 × 16 pixels. The authors stored the images in JPG

format, which justifies the downsampling of the Cb and Cr channels, as discussed in

Section 3.3.4. For the grey-scale experiments only the Y channel is modelled, and the

Cb and Cr channels are discarded. The patch size, nf , for our covariance prediction

for the Y channel is set to 3, which reduces the number of non-zero elements in L from

8, 390, 656 to 20, 480. The models are trained for 110 epochs using a batch size of 64

and a learning rate of 0.0005. For data augmentation we employ simple left-right flips

of the images. The VAE architecture from [Pu et al., 2017b] is used for the encoder

and decoder networks.

For the SRD model, the hyper-parameter values for the regularisers are α = 10 and

γ = 0.001. However, for the first 10 epochs we set α = 1e4. Moreover, the network

weights are initialised with the weights of a VAE trained with Gaussian likelihood with

a spherical covariance, i.e. VAE (Sph) is used as pretraining for VAE (SDR). The VAE

models with a factorised Gaussian likelihood, VAE (Sph) and VAE (Diag) were intro-

duced in Section 3.4.1. Additional implementation details are given in appendix A.2.2.

Metrics

In Section 1.3 several metrics were discussed for the evaluation of unsupervised gener-

ative models. Those metrics are reported on the test set, and two new metrics, the KL

and the MSE are included as well:

1. NLL: denotes the approximate negative log likelihood − log p(x), as there is no

close form solution for the likelihood, a lower bound is evaluated by numerically

integrating over 500 z samples per image as described in [Burda et al., 2016].

102

2. # params: is the number of learnable parameters in the neural network, which

indicates model complexity.

3. KL: is the Kullback-Leibler divergence of the approximate posterior, qφ(z|x), to
the prior on the latent variables p(z). As samples from the model are drawn from

the prior distribution, usually, a high value is indicative of low quality samples.

4. MSE: is the mean squared error between the input image and its reconstruction.

It is measured using the RGB images before the conversion to YCbCr colour

space, and it is computed using only the predicted means, i.e. ǫ is set to zero.

The images are transformed to the range [0, 255] before evaluating the metric.

RGB vs YCbCr

In order to isolate the effects of switching from the RGB to the YCbCr colour space,

we train two VAEs with a diagonal covariance Gaussian likelihood, one for each colour

space. Reconstruction from these models are shown in Fig. 3-16, which include a sample

from the predicted residual distribution. It can be clearly seen that the coloured salt

and pepper noise observed in the RGB model, is now mostly replaced by noise in the

luminance channel in the YCbCr model. This agrees with our initial findings on the

real residual images, which were shown in Fig. 3-6.

IPE vs SDR

In this section, we evaluate both the IPE and the SDR methods on grey-scale images

from the CelebA dataset. In order to have a fair comparison between the IPE and

the SDR models, we use the VAE trained with the SDR approach for the encoder and

decoder networks (µ and z) that are needed for the IPE method.

Quantitative results for both models are shown in Table 3.3. Although IPE and SDR

perform similarly in terms of negative log likelihood, IPE is more complex (in # params)

as it requires a separate decoder network for the structured covariance prediction.

In order to avoid needless repetition, qualitative results are not presented here, as they

will be shown in subsequent sections for both models. Moreover, as implied by the

quantitative analysis, the models are qualitatively indistinguishable from each other.

103

Input VAE-RGB (Diag) VAE-YCbCr (Diag)

µ ǫ µ+ ǫ µ ǫ µ+ ǫ

ǫY ǫCb ǫCr ǫY ǫCb ǫCr

− 2

− 1

0

1

2

− 2

− 1

0

1

2

Figure 3-16: Reconstructions for diagonal covariance Gaussian likelihood VAEs trained
on RGB images and on YCbCr images. Below each row, the predicted residuals per
channel in YCbCr colour space are shown. Training on the YCbCr colour space allows
the model to restrict the residual content to appear mostly on the Y channel, while in
RGB salt and pepper noise of similar magnitude is observed in all the channels.

Model NLL KL # params

VAE (IPE) –8308 ± 1455 269.76 9.78e6

VAE (SDR) –8297 ± 1455 269.76 6.72e6

Table 3.3: Quantitative comparison of density estimation error measured as the nega-
tive log likelihood (NLL), KL and # params for the grey-scale CelebA dataset, lower is
better. The SDR model is able to achieve a likelihood similar to IPE, with a significant
reduction in model complexity.

Näıve training and priors

In this section we demonstrate the need for regularised approaches to learn structured

uncertainty in VAE models. We explore several models that were discussed in the

methodology section, including: a model without regularisation (VAE (Σ)), which cor-

responds to the SDR approach with α = 0 and γ = 0, and VAEs with different prior

distributions on the covariance matrix, which also use our sparse Cholesky approx-

imation. We experimented with two priors, a sparse Cholesky-Wishart distribution

104

Model NLL (with / without prior) KL MSE

VAE (Σ) 1.48e6 ± 2.33e2 / –8.67e3 ± 1.31e3 236.88 1.20e4 ± 5.00e3

VAE (Σ-Ga
1

2N) 3.28e4 ± 1.79e4 / 3.52e4 ± 1.48e4 221.55 3.82e3 ± 1.55e3

VAE (Σ-W c
sp) 3.29e4 ± 1.79e2 / 3.56e4 ± 1.50e4 214.61 3.84e3 ± 1.59e3

VAE (SDR) 1.46e6 ± 4.37e2 / –8.67e3 ± 1.42e3 269.76 2.57e2 ± 1.28e2

Table 3.4: Quantitative comparison of density estimation error measured as the nega-
tive log likelihood (NLL), KL and MSE for the CelebA dataset, lower is better. The
NLL is reported with the prior cost on the L matrices, and without it. For VAE
(SDR), without prior refers to the likelihood without the regularisation losses. Al-
though VAE (Σ) has a similar likelihood as the SDR variant, this does not translate
to qualitative performance, as highlighted by the large gap in MSE, and as shown in
Fig. 3-17 and 3-18.

(VAE (Σ-W c
sp)) and a Gamma-Gaussian distribution (VAE (Σ-Ga

1
2N)), as discussed

in Section 3.3.5. These two models are trained by maximising the objective defined in

equation 3.35.

For both prior distributions, equation 3.46 is used to set V, with p = n + 10 and

κ = 0.09, where these hyper-parameters are chosen such that the distributions are

weakly informative and they have a preference for small magnitude residuals. The real

amount of noise in the data is not known, thus, we use the average predicted variance

for a VAE (Sph) trained on this dataset to choose the value for κ. The covariance

matrix for VAE (Sph) is defined as Σ = σI, and the value of κ is the average σ over

the test set. As discussed in Section 3.3.5, the value of κ is the standard deviation of

the expected noise. Intuitively, for pixel values in the range [−1, 1], this choice of κ

assumes noise of up to 8% of the signal, as a normal distribution with a variance of κ2

has 95% of the mass between the range [−0.182, 0.182]. In other words, the expected

noise is approximately ±23 for pixel values in a range of [0, 255].

Quantitative results are shown in Table 3.4, where the negative log likelihood (NLL),

the KL divergence to the prior on the latents, and the mean squared error (MSE)

are reported. An uninformative Gamma-Gaussian prior on L is used for the models

that were trained without priors, VAE (SDR) and VAE (Σ). This prior is added

only for the likelihood calculation, and consists of a square root Gamma distribution,

as defined in equation A.36, with a = b = 1e−6 ≈ 0 for the diagonal terms, and a

Gaussian distribution with zero mean and a standard deviation of 3.4e37 ≈ ∞ for the

off-diagonal terms.

Training a model without any regularisation, VAE (Σ), leads to similar likelihood

105

Input VAE (Σ) VAE (Σ-Ga
1
2N) VAE (Σ-W c

sp) VAE (SDR)

µ µ+ ǫ µ µ+ ǫ µ µ+ ǫ µ µ+ ǫ

Figure 3-17: Comparison of image reconstructions for the different models. A model
without regularisation, VAE (Σ), encodes much of the information in the input image

in the structured residual. Employing regularisation with priors, VAE (Σ-Ga
1
2N) and

VAE (Σ-W c
sp), leads to unstructured noise and poor means. Only our approach with

additional loss functions, VAE (SDR), is able to generate good reconstructions.

(with or without priors) and KL terms as VAE (SDR). However, the VAE (Σ) model

struggles to generate realistic images, as was shown in Fig. 3-8. The models trained

with priors offer a mild improvement in terms of MSE with respect to not using any

regularisation. However, they overly concentrate on maximising the prior likelihood

of the predicted parameters in the L matrix. Thus, neglecting the data term during

the optimisation. Varying how informative the prior is does not solve the problem, as

making it less informative leads to a higher cost per parameter in the L, while more

informative also has a higher cost for the values that deviate from V. This experiment

also serves to empirically demonstrate how both prior distributions are equivalent, as

proved in Section A.1.6 in the appendix.

Qualitative results are shown in Fig. 3-17 and 3-18, which display reconstructions and

samples respectively. These results highlight the advantages of using our regularised

approach, as all models with or without prior regularisation fail to reliably produce

good quality images with high frequency details. In the model trained without any

regularisation, VAE (Σ), in order to achieve a high likelihood, the Gaussian has a

choice between modelling data on the means (with low variance) or on the covariance

(with very high covariance terms). In practice, we observe the later, with means, µ, that

have little image content, and the data being modelled mostly as stochastic residuals.

Employing a sparse Cholesky-Wishart or a Gamma-Gaussian prior leads to covariance

matrices that are too strongly diagonal, without a corresponding improvement on the

106

VAE (Σ) VAE (Σ-Ga
1
2N) VAE (Σ-W c

sp) VAE (SDR)

µ µ+ ǫ µ µ+ ǫ µ µ+ ǫ µ µ+ ǫ

Figure 3-18: Comparison of samples generated by the different models. Not employing
regularisation, VAE (Σ), leads to modelling the image distribution in the structured

residual. Employing regularisation with priors, VAE (Σ-Ga
1
2N) and VAE (Σ-W c

sp),
leads to unstructured noise and poor means. Only our approach with additional loss
functions, VAE (SDR), is able to generate good samples.

means, µ.

These experiments have been carried out with the SDR approach; however, they also

serve to demonstrate the need for the IPE approach. As it was demonstrated above,

both methods produce similar results. The difference is that in the SDR approach,

the regularisation occurs in the form of explicit losses, while in the IPE method, the

regularisation emerges from the training procedure.

3.4.4 Comparison to previous work

In this section we compare the SDR approach to previous methods, which include dif-

ferent covariance factorisations for Gaussian likelihood VAEs, and the β-VAE approach,

as discussed in Section 3.4.1. The SDR approach is chosen as it was previously demon-

strated that the SDR and IPE methods perform similarly. Yet, the SDR approach

offers significant savings in terms of number of parameters in the neural network, and

it allows for the encoder and decoder networks to be trained end-to-end.

The models are trained on two datasets in YCbCr colour space, CelebA [Liu et al.,

2015] and LSUN [Yu et al., 2015]. As previously discussed, CelebA is a relatively

simple dataset of aligned images of human faces. The LSUN dataset provides a harder

107

Model NLL KL # params

VAE (Sph) –4517 ± 1308 322.94 6.68e6

VAE (Diag) –4598 ± 2747 341.92 6.67e6

β-VAE (Diag) –5574 ± 1083 199.16 6.67e6

VAE (SDR) –8669 ± 1424 281.91 6.70e6

Table 3.5: Quantitative comparison of density estimation error measured as the nega-
tive log likelihood (NLL), KL and # params for the YCbCr CelebA dataset, lower is
better. The SDR model outperforms previous methods in terms of NLL, with a similar
parameter budget. β-VAE obtains a lower KL divergence, yet, the samples produced
by our model are of similar quality as theirs, as shown in Fig. 3-20.

challenge, as it contains unaligned images of outdoor churches.6

CelebA

Quantitative results for models trained on YCbCr images are shown in Table 3.5. For

β-VAE we report the negative log likelihood (NLL) after setting β = 1, i.e. after

removing the regulariser term. Our method achieves significantly lower likelihood than

competing methods with a similar parameter budget.

The KL divergence between the approximate posterior and the prior shows that jointly

learning a correlated residual distribution is also beneficial in order to achieve a latent

distribution that better matches the prior distribution. However, the KL divergence

can be a misleading indicator of sample quality. Experiments employing a lower β

weight for the β-VAE produced worse quality samples, with a KL divergence that was

still lower than in our SDR model.

β-VAE may be interpreted as adding a correction factor in the KL divergence that is

meant to compensate for the factorised Gaussian assumption. In contrast, in our model

the data is well represented, which leads to a latent space that produces good samples

without the need to add a correction factor. However, a disadvantage of our model is

the addition of the α and γ hyper-parameters in equation 3.51.

Reconstructions from the models are shown in Fig. 3-19. The means, µ, obtained with

our model are comparable to competing methods. The samples, ǫ, from the learned

residual distribution add unrealistic noise in the image for VAE (Sph). The diagonal

6The dataset contains other scene categories that we will not use.

108

Input VAE (Sph) VAE (Diag) β-VAE (Diag) VAE (SDR)

µ µ+ ǫ µ µ+ ǫ µ µ+ ǫ µ µ+ ǫ

Figure 3-19: Comparison of image reconstructions for the different models. In contrast
to previous work, our model is able to learn structured residuals. This structured
residuals add plausible high-frequency content to the means, µ, such as hair details in
the first row, or tooth details in the second row.

model of VAE (Diag) and β-VAE (Diag) is able to improve on this, and it does not

include unrealistic noise in areas that are modelled well, such as the white background

on the lower-right side of the image in the second row. In contrast to previous work,

the residuals from our model add plausible details, like hair.

Samples from all the models are shown in Fig. 3-20. Overfitting to the data term can

be observed in VAE (Sph) and more so in VAE (Diag), as denoted by the high value in

the KL divergence shown in Table 3.5. Consequently, this leads to a latent space that

does not follow the prior distribution and thus to the poor samples observed. β-VAE is

able to produce samples that are of similar quality to its reconstructions. Our method

is able to produce good quality samples, where the covariance network is again able to

model plausible high frequency details, unlike competing methods.

LSUN

In this section we analyse the SDR approach on the LSUN [Yu et al., 2015] dataset,

where we train the models only on the church outdoors category. There are 126, 227

training images, and 300 for validation for this category. As the test data is not

available we use the validation set instead. We found it beneficial to increase the

number of training epochs to 150, as this dataset is more complex than CelebA. All

other hyper-parameters are carried over from the CelebA experiments in the previous

section.

109

VAE (Sph) VAE (Diag) β-VAE (Diag) VAE (SDR)

µ µ+ ǫ µ µ+ ǫ µ µ+ ǫ µ µ+ ǫ

Figure 3-20: Samples for all models, where our method is the only able to include
high-frequency details such as wrinkles. Neither the means, µ, nor the residuals, ǫ,
generated by VAE (Sph) and VAE (Diag) are realistic. VAE (SDR) not only generates
realistic residuals, but also improves the quality of the sampled means, µ, over the
VAE (Sph) model, which is used for pretraining.

Model NLL KL MSE

VAE (Sph) –2440 ± 1176 303.83 566 ± 285

VAE (Diag) –4464 ± 1924 331.06 728 ± 327

β-VAE (Diag) –4213 ± 2055 205.88 800 ± 354

VAE (SDR) –6918 ± 2423 313.92 614 ± 286

Table 3.6: Quantitative comparison of density estimation error measured as the neg-
ative log likelihood (NLL), KL and MSE for the LSUN dataset, lower is better. Our
model is able to achieve a significant improvement in likelihood in comparison with
VAEs with factorised noise models.

Quantitative results for reconstructions are presented in Table 3.6, where we measure

the mean squared error (MSE) with respect to the input, as well as the negative log

likelihood (NLL). A VAE with a spherical covariance is able to achieve the lowest

reconstruction cost. However, as previously discussed, real samples from this model

include unrealistic salt and pepper noise. Our model is able to outperform competing

methods in terms of marginal log likelihood.

Reconstructions are shown in Fig. 3-21, where we find again that our model is able

to produce better means than competing methods, with the exception of a VAE with

spherical covariance. However, the residuals modelled by a spherical covariance VAE

are quite limited, as they are forced to have high levels of noise throughout the image,

including areas which are trivial to model, like flat regions of the sky. Our structured

110

Input VAE (Sph) VAE (Diag) β-VAE (Diag) VAE (SDR)

µ µ+ ǫ µ µ+ ǫ µ µ+ ǫ µ µ+ ǫ

Figure 3-21: Comparison of image reconstructions for the different models. Our model
is able to improve over the noisy images generated by previous work. However, the
increased complexity of this dataset has a detrimental effect on the quality of the
images generated by all the models.

residuals add fine detail, however as this dataset is more complex than CelebA, all the

models struggle to reconstruct the input. A factor that plays a role in the complexity

on this dataset is the lack of alignment between the images, as it is not obvious how to

align churches.

Samples from the models are shown in Fig. 3-22, where we find that the VAE with

diagonal covariance struggles to generate anything meaningful. β-VAE is able to gen-

erate recognizable shapes, which are significantly blurry, while our model is able to

produce means similar to VAE (Sph) with better noise samples.

3.4.5 Model insights

In this section we show additional results that provide further insights into our model.

The VAE (SDR) model trained on the CelebA dataset that was used in the previous

section is employed in all the experiments, unless otherwise stated.

Multiple residual samples In order to highlight the stochastic nature of the resid-

uals, in Fig. 3-23 several residual images sampled from the same covariance matrix are

shown, i.e. the covariance matrix is kept fixed for each input image. It can be seen how

there is significant variability between the samples, covering different hair positions

7https://garoe.github.io/thesis/supplement/animated_edits.html

111

https://garoe.github.io/thesis/supplement/animated_edits.html

VAE (Sph) VAE (Diag) β-VAE (Diag) VAE (SDR)

µ µ+ ǫ µ µ+ ǫ µ µ+ ǫ µ µ+ ǫ

Figure 3-22: Samples drawn from the models. VAE (Diag) fails to learn a useful latent
space and β-VAE produces blurrier images than our model. The images produced by
our approach contain structured high-frequency content, still, all the models are unable
to generate realistic images.

Input µ

Input µ

Figure 3-23: Variability of the residual images for reconstructions using the VAE (SDR)
model. In the first row, each column shows a residual sample from the same covari-
ance matrix, and those are added to the mean, µ, in the second row. Variations of
hair position or teeth shape can be observed. Additional results can be found in the
supplemental video7.

or teeth variations. This demonstrates that the estimated covariance matrices span a

space of plausible, yet, distinct residual images.

Latent space interpolations To evaluate the generalisation of the model to differ-

ent regions in the latent space, we show in Fig. 3-24 the result of interpolating between

112

Source i = 0.0 i = 0.2 i = 0.4 i = 0.6 i = 0.8 i = 1.0 Target

Figure 3-24: Samples drawn with our model while interpolating on the latent space,
from the source to target. The i value on each column corresponds to equation 3.54.
For every pair of rows, the first contains the sample from the model, µ + ǫ, and the
second contains the mean, µ.

an image and its x-flipped mirror image. The latent values, z, between the image pair

are interpolated using polar interpolation8:

zi = zs
√
1− i+ zt

√
i, (3.54)

where zi is the latent code for the ith step, zs is the latent code of the source image,

zt is the latent code of the target image, and i is an interpolation factor in the range

[0, 1]. Using a fixed noise vector u, a single sample is drawn from our model for

each interpolation step as xi = µi +Miu, where the mean, µi, and the covariance,

Σi = MiM
T
i , are estimated from the corresponding zi. The generated images are

plausible, and the sampled residuals are consistent across the interpolated images.

Variance maps To further highlight the differences between the diagonal and dense

covariance models, a variance map for the Y channel is shown in Fig. 3-25 for both mod-

8 Polar interpolation leads to better results than linear interpolation. During model learning and
inference, the latent vectors, z, have roughly the same norm. However, linear interpolation tends to
produce vectors with significantly smaller norm, which usually correspond to parts of the latent space
that are not well modeled by the decoder. A more in depth discussion of this issue can be found
in [Huszar, 2017].

113

VAE (Diag) VAE (SDR)

InputY µY µY + ǫY diag(ΣY) µY µY + ǫY diag(ΣY)

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

Figure 3-25: Variance maps for the Y channel in a VAE with diagonal covariance
Gaussian likelihood and in a VAE employing the SDR approach for a dense covariance
matrix. The diagonal noise estimation model mistakenly identifies teeth (red rounded
rectangle in the first row) or hair (red rounded rectangle in the second row) as high
variance regions, whereas our covariance model properly identifies them as regions with
high covariance, yet lower variance.

els. The variance is defined as the diagonal part of the predicted covariance matrix. The

VAE (Diag) model must explain all the errors with variance, while VAE (SDR) is able

to explain some with correlations. The effect of this is evident when sampling residuals

from the estimated covariance matrix, and when analysing the high variance areas in

the predicted residual distribution. For example, the diagonal model characterises hair

and teeth areas as high variance regions, while the dense covariance approach models

those regions with high covariance and lower variance.

Restricted vs unrestricted input features for the covariance network We

now demonstrate that the IPE approach is able to learn structured residual distri-

butions from an unrestricted latent space. For this experiment, we train both an

Autoencoder (AE) [Cottrell et al., 1987] and a VAE (Diag) model. The AE is trained

with a mean squared error, and learns an unrestricted latent space, z, which is used

as input for the covariance network. The latent space learned by the VAE (Diag) is

approximately Gaussian distributed, due to the isotropic Gaussian prior that is used

114

Input AE AE (IPE) VAE (Diag) VAE (IPE)

µ µ+ ǫ µ µ+ ǫ µ+ ǫ

Figure 3-26: Comparison of image reconstructions when applying our IPE model to an
AE and a VAE (Diag). For both the AE and VAE, our IPE model adds plausible high-
frequencies from a single sample drawn from the predicted uncertainty distribution.
The distribution of the latent features in a VAE (Diag) is approximately Gaussian, while
the AE latent space distribution is unrestricted. Thus, demonstrating that structured
residuals can be learned from the unrestricted latent space learned by the AE.

in the model.

For this experiment we train the models using grey-scale images, and the neighbourhood

size in L is increased to 7×7. The covariance networks are trained with a learning rate

of 1e-3 for 50 epochs. Additional implementation details are given in appendix A.2.1.

Example reconstructions for the models are shown in Fig. 3-26. The means, µ, produced

by the AE are sharper than those produced by the VAE (Diag), yet they still lack high-

frequency details. The residuals learned by our model appears to be of the same quality,

regardless of the shape of the latent space, i.e. Gaussian distributed for the VAE (Diag)

and unrestricted for the AE. These residuals add plausible high-frequency details, like

teeth and hair, to the means produced by the VAE (Diag) and the AE models.

A quantitative comparison for the models is presented in Table 3.7, where − log p(x | z)
is reported. This metric is used instead of the NLL, as the NLL cannot be tractably

evaluated for the AE and the AE (IPE) models. This occurs because the AE is not a

probabilistic model, as it does not have an explicit distribution over the latent space,

115

Model − log p(x | z)
VAE (Diag) –6079 ± 936

AE (IPE) –8242 ± 433

VAE (IPE) –8386 ± 1339

Table 3.7: Quantitative comparison of density estimation error, for VAE (Diag), AE
(IPE) and VAE (IPE), lower is better. Our IPE approach achieves a similar conditional
likelihood for both VAE and AE. Thus, demonstrating that there is no loss in perfor-
mance when using the unrestricted latent space from an AE as input for the covariance
network.

Figure 3-27: Overview of the proposed denoising technique with our covariance pre-
diction network. The noisy input, x, is reconstructed, generating µ and Σ. A noisy
residual, s = x−µ, is projected on the space spanned by the predicted covariance, pro-
ducing a clean residual, fΣ(s). This projected residual is added to the mean, fΣ(s)+µ,
to generate the denoised image, d. The projection step, fΣ(s), is explained in the text.

z. For the − log p(x | z) evaluation in VAE (Diag) and VAE (IPE), we simply take the

mean vector predicted by the encoder for z. This is intended to replicate the situation

with the AE. Our model performs similarly regardless of the model that is used for the

means, VAE (Diag) or AE. Thus, demonstrating that a structured residual distribution

can be learned from the unrestricted latent space of an AE.

3.4.6 Application: denoising

One possible application of the covariance prediction network is image denoising, which

is demonstrated using the IPE method with a VAE (Diag) from the previous section.

This model was trained with grey-scale images on the CelebA dataset. We hypothesise

that our predicted covariance matrices will only span the space of valid face residuals,

thus projecting a noisy residual in that space will remove the noise.

An overview of our denoising method is shown in Fig. 3-27. Here, the noisy image

116

Model MSE PSNR SSIM

DAE 0.005 ± 0.003 28.89 ± 1.69 0.90 ± 0.03

Ours 0.003 ± 0.001 31.38 ± 0.92 0.92 ± 0.02

Table 3.8: Quantitative comparison for denoising in terms of mean squared error (MSE,
lower is better), peak signal-to-noise ratio (PSNR, higher is better) and SSIM (higher
is better) with respect to the noise-free input. Our model is on average able to produce
better results than an Autoencoder trained for denoising.

is reconstructed using the VAE, which was not trained with noisy data. Thus, µ is

a denoised image, which lacks high-frequency details. The residual between the noisy

input and the reconstruction is computed, and projected onto Σ̂, which is created by

taking the nv eigenvectors of Σ with the largest eigenvalues. This projection step

is denoted as fΣ(s) in the figure, and it is defined as fΣ(s) = sQ̂Q̂
T
, where Q̂ is a

n × nv matrix with the eigenvectors. The projected residual is added to the VAE

reconstruction, µ, to produce the final denoised image.

The number of eigenvectors acts a control over how aggressive the denoising process

is, where using a small number removes more noise, yet, it also discards useful high-

frequency content. For this experiment we use nv = 1000, where the hyper-parameter

was manually chosen such that the images appear realistic after denoising.

As a baseline we train an Autoencoder explicitly for denosing (DAE) using a mean

squared error loss, and with the same architecture as the VAE. The noisy images are

constructed by adding salt and pepper noise to the noise-free images. The noise is

sampled from N
(

0,
(

0.25
3

)2)

.

Quantitative results for this experiment are shown in Table 3.8, where mean squared

error (MSE), the peak signal-to-noise ratio (PSNR) and the structural similarity index

(SSIM) [Wang et al., 2004] is reported for the first 2000 images in the test set. Our

approach achieves lower error than the DAE, which was trained specifically for this

task.

Qualitative results from our model and the DAE are shown in Fig. 3-28. Note how the

use of the structure covariance model is able to filter the noise to generate plausible

structured high-frequency details, while the DAE fails to recover those details.

117

Original Input DAE Ours VAE-Recons Noisy residual Proj. residual

x µ+ f(s) µ s = x− µ f(s)

Figure 3-28: Denoising experiment, left column: original image without noise, second
column: image with added noise, third column: denoising autoencoder (DAE) result,
fourth column: our result, fifth column: VAE reconstruction from the noisy input, sixth
column: residual between the VAE reconstruction and the noisy input, right column:
the noisy residual projected on Σ̂, the matrix constructed with 1000 eigenvectors of
Σ. Our result is the sum of the projected residual and the VAE reconstruction. Our
model is able to recover fine details that are lost with the DAE approach.

3.5 Discussion

In this chapter, we have proposed two approaches for training a deep neural network to

predict dense covariance matrices for the residual image distribution of unseen image

reconstructions. Our results show that ground truth covariances can be learned for toy

data, and samples of better quality than previous work can be generated for CelebA [Liu

et al., 2015] and LSUN [Yu et al., 2015] data. Additionally, we have shown a practical

application of this approach for denoising face images.

We have demonstrated how to endow Variational Autoencoders (VAE) with a struc-

tured likelihood model. Our results show that VAEs can be successfully trained to

predict structured output uncertainty, subject to additional regularisation terms, and

that such models have similar mean reconstructions than those obtained with a fac-

torised likelihood model. Moreover, we have shown that under a complex enough

likelihood distribution, VAEs are able to generate images with high frequency details.

There are still open questions, such as: what is the best input data to use for the

covariance network? Is it best to learn directly from z or µ or some other pre-learned

118

function of either of these? Is it possible to substitute the regularisation losses used in

VAE (SDR) for a more principled approach, such as automatic relevance determination

techniques [Mackay, 1995] with hierarchical priors? Could this approach be extended

to obtain better quality results on complex datasets like LSUN?

Finally, we have only examined the residual image distribution for reconstruction mod-

els trained with a Gaussian likelihood. An interesting avenue to explore would be a

structured pixel uncertainty distribution for other reconstruction error metrics, such

as perceptual [Hou et al., 2017] or adversarial losses [Larsen et al., 2016, Huang et al.,

2018]. This might help with complex datasets where the current model struggles, such

as LSUN. Additionally, the approach might also be applied for models that use the

mean squared error for tasks other than reconstructing, such as segmentation or depth

estimation.

119

Chapter 4

Warping GAN

4.1 Introduction

In the previous chapter an unsupervised generative method based on Variational Au-

toencoders [Rezende et al., 2014, Kingma andWelling, 2014] was discussed. The novelty

of the method was the inclusion of a tractable approach for modelling structured uncer-

tainty. The model was able to provide high-level editing by interpolating in the latent

space between different images. However, most deep learning models, including the

one presented in the previous chapter, are limited to operate on the image resolution

it was trained with.

This chapter describes a model for face editing that predicts smooth geometric deforma-

tions (warping) of the input image. As the deformations are smooth, they can be easily

upsampled and applied at arbitrary resolutions. Thus, overcoming the weaknesses of

the model described in the previous chapter, as long as the editing operation is amenable

to be modelled by warps. Moreover, the technique is based on StarGAN [Choi et al.,

2018], one of the image-to-image translation models discussed in Section 2.6, which

allows the model to be trained without explicit regression targets.

4.1.1 Motivation

We are interested in photo-realistic image editing, in which deep learning image-to-

image translation methods have shown promising results [Zhu et al., 2017, Choi et al.,

2018, Pumarola et al., 2018]. As discussed in Chapter 1, we also focus on methods that

120

α = 0.0 α = 0.12 α = 0.25 α = 0.37 α = 0.5 α = 0.62 α = 0.75 α = 0.87 α = 1.0

Figure 4-1: Example of partial edits on the GANimation [Pumarola et al., 2018] model.
The input image, α = 0.0, is progressively edited to match the facial action units [Ek-
man and Friesen, 1976] of a smiling face, α = 1.0.1

provide a simple interface for users to edit images, i.e. a single control per semantic

characteristic, as this makes it easier for novice users.

Most deep learning editing methods [Choi et al., 2018, Dekel et al., 2018, Portenier

et al., 2018, Pumarola et al., 2018, Geng et al., 2018, Yan et al., 2016], including

the aforementioned image-to-image translation methods, predict the pixel values of an

edited image directly. Example edits from these methods are shown in Chapter 1 in

Fig. 1-5. A consequence of this approach is that these methods are limited to only

being effective on images that have a similar resolution to the training data. A further

disadvantage of current methods is the difficulty of applying a partial or exaggerated

edit, as shown in Fig. 4-1, as opposed to a binary attribute change. For this to be

possible, an extensive collection of soft attribute data is required. In this example, the

annotation process consisted of assigning a soft score from zero to one indicating the

strength of a number of facial action units [Ekman and Friesen, 1976]. This is labour

intensive, and at test time each intermediate value requires another forward pass of the

network, creating increased computational expense [Pumarola et al., 2018].

Recently, some interesting approaches that allow edits at arbitrary resolutions have

been proposed. They proceed by estimating the edits at a fixed resolution and then

applying them to images at a higher resolution. The types of possible edits are restricted

to either warping [Yeh et al., 2016] or local linear colour transforms [Gharbi et al.,

2017]. However, these approaches are limited by requiring paired data, i.e. for each

source image in the dataset, they need the corresponding edited image. For example

the paired data approach by Yeh et al . [Yeh et al., 2016] employs images of the same

subject under different expressions and camera poses. This data was collected with an

expensive setup with multiple synchronised cameras, and with laboratory controlled

illumination.

In contrast, many pixel-based methods [Choi et al., 2018, Dekel et al., 2018, Portenier

et al., 2018, Pumarola et al., 2018] do not need paired data for training. This is of

1Image courtesy of [Pumarola et al., 2018].

121

Input Warped Warped + Details

Figure 4-2: Example of expression editing, where a neutral expression face, input image,
is edited to a smiling expression. If warping alone is used, the edit appears too subtle.
Adding details like shadows and wrinkles improves the quality of the edit.2

particular importance, as collecting paired data is significantly more expensive and time

consuming than collecting unpaired data. Some methods [Choi et al., 2018, Pumarola

et al., 2018] achieve this by extending the Cycle-GAN [Zhu et al., 2017] approach,

which was described in Section 2.6. While others [Dekel et al., 2018, Portenier et al.,

2018] automatically produce paired data in a self supervised manner. This regularises

learning enough, such that applying an adversarial loss to the outputs during training

is enough to ensure good quality results.

An interesting combination of the aforementioned methods would be a model that

allows partial semantic editing at high-resolution without requiring paired data. Such

a model can be used for an editing system where each attribute is associated with a

slider. Thus, providing simple yet powerful controls over the image editing process,

while being usable at a wide range of resolutions.

4.1.2 Proposed solution

In this chapter, we introduce an approach to learn warp fields for semantic image editing

without the requirement of paired training data samples. This is achieved by exploiting

recent approaches for learning edits from unpaired data with cycle-consistency checks.

Our proposed model uses a similar framework to StarGAN [Choi et al., 2018] to predict

warp fields that model the requested edits. As the predicted warp fields are smooth,

they can be trivially upsampled and applied at high resolutions.

An evident disadvantage of the proposed model is that there are clear limitations to the

types of edits possible through warping. Namely, warping can only model deformations

2Images courtesy of [Liu et al., 2001].

122

in the object shape. Thus, edits that require colour transformations or synthesising

new content are not possible. For instance, changing the hair colour of a person from

blonde to brunette is unattainable with this method.

Furthermore, for transformations amenable to be characterised in this way, the edit

might still not be fully representable. For example, moderate changes in face expres-

sions have been shown to be modelled well by warping [Geng et al., 2018]. However,

details like changes in illumination and appearance, such as wrinkles, are not captured

well [Liu et al., 2001], as shown in Fig. 4-2.

We argue that, for the changes that can be described by warping, there are several

benefits of doing so. The advantages of our proposed model with respect to pixel

translation models can be summarised as:

1. Smooth warp fields can be upsampled and applied to higher resolution images

with a minimal loss of fidelity. This is opposed to upsampling images, which

commonly results in the loss of high frequency details. We show plausible edits

produced by warp fields upscaled by up to a 30× factor of the resolution they

were estimated at.

2. Modelling only geometric transformations makes it easier to add priors to regu-

larise against unrealistic edits. For example, it is easy to restrict the deformations

to be locally consistent.

3. Warp fields lead to a model that is better at preserving a subject’s identity. This

is demonstrated quantitatively by measuring an identity score based on a face

re-identification network.

4. Warp fields are more interpretable than pixelwise differences, which are the trans-

formations produced by most pixel-based approaches. Particularly with respect

to identifying potentially erroneous or unrealistic edits. We illustrate this by

providing maps showing the degree of local stretching or squashing.

5. Warp fields are more suited to allow partial edits than pixel-based approaches.

In other words, the model can produce partial edits while being trained only

with binary labelled data. We demonstrate the simplest implementation of this

by scaling the warp field using a single scalar parameter. Interpolation between

the input image and the complete edit is demonstrated by varying the scalar

from zero to one, while values larger than one demonstrate extrapolation, i.e.

exaggerated edits. We qualitatively show that edits produced in this way are

plausible.

123

An additional contribution presented in this chapter is to improve the specificity of

editing attributes in StarGAN-based models. We have observed that when these models

are trained with several binary attributes, they can transform more than one attribute

of the image, even if only a single attribute edit was intended. This is caused by the

model having no indication of the attributes that should be edited, only of the final

expected attribute labels. For example, when enlarging the nose of a subject that has

a slight smile, the model will not only make the nose bigger, but also make the smile

more pronounced. In order to overcome this limitation, we propose to transform the

binary labels used for each attribute to inform the model of which attributes should be

edited, and which should remain fixed. This produces only the expected changes, and

it does not require any extra attribute annotation. Moreover, it removes the need to

rely on attribute classifiers during inference.

4.2 Previous work

Modern image-to-image translation methods can be trained with unpaired data, in

particular, models based on the Cycle-GAN [Zhu et al., 2017] approach, as discussed

in Section 2.6. This is a key component for our method, and as such we choose to

build upon StarGAN [Choi et al., 2018], a state of the art model for image-to-image

translation, which was described in the same section.

4.2.1 StarGAN

An overview of the characteristics of the model discussed in this chapter compared

to previous methods is shown in Table 4.1. As highlighted in the table, StarGAN

operates on interpretable and easy to collect labels for the attributes, as well as running

at interactive speeds. However, it cannot operate at arbitrary resolutions, nor can it

perform partial edits when trained on binary labelled data. Thus, we will discuss

in more detail several deep learning models that focus on generating images at high

resolutions, some of which support partial edits.

4.2.2 Methods for high resolution

Methods for editing images at high resolution can be divided in two categories: (i)

methods that use intermediate representations that are designed to upsample well to

124

Method Unpaired
Data

High
Resolution

Forward
Pass

Partial
edits

Pix2Pix [Isola et al., 2017] X

CycleGAN [Zhu et al., 2017] X X

StarGAN [Choi et al., 2018] X X

FaceShop [Portenier et al., 2018] X X

FlowVAE [Yeh et al., 2016] X X X

CWF [Ganin et al., 2016] ∼ X ∼
DBL [Gharbi et al., 2017] X X X

iGAN [Zhu et al., 2016] X ∼ X

DFI [Upchurch et al., 2017] X ∼ X

Ours X X X X

Table 4.1: Compared to previous work, our method is the only one that is able to edit
high-resolution images in a forward pass of the network, without the need for paired
data during training. The model also allows to perform partial edits of the input image.
The symbol ∼ denotes partial fulfilment of a criterion.

arbitrary resolutions, and (ii) methods that directly predict pixel values at high reso-

lutions.

Methods designed for upsampling

These approaches are based on predicting intermediate representations that are rela-

tively agnostic to image resolution; e.g . warp fields, local colour affine transformations

or blendshape weights.

Warp fields, if sufficiently smooth, can be predicted at a lower resolution, upsampled

and applied at high resolution with minimal loss of accuracy. Previous methods have

applied them to redirecting eye gaze [Ganin et al., 2016], editing emotional expres-

sions [Yeh et al., 2016] and synthesising objects in novel views [Zhou et al., 2016]. By

scaling the predicted warp field, partial edits are supported by these methods. However,

these models require paired training data. Additionally, in the eye gaze redirection ap-

proach [Ganin et al., 2016] a supplementary CNN is used after warping to directly edit

the pixels in the output image, which limits the upsampling effectiveness of the whole

model.

Spatial Transformer GANs [Lin et al., 2018] predict a series of global affine deformations

125

that can be estimated at a lower resolution and applied at arbitrary resolutions. The

model is designed to automatically compose a foreground image into a background one,

where the foreground image is aligned to the background one using the global transfor-

mations. This method is limited in that it only supports a global affine transformation

to a foreground image, which is then pasted on top of a background image. Thus, using

this method for face editing would require an infeasibly large dataset of suitable face

parts to use as foreground images in order to preserve identity.

Local data dependent linear transformations of pixel intensities have been estimated

from low resolution images to model the effect of image enhancement filters [Chen et al.,

2016], and this was demonstrated to upsample well to high resolution images at test

time. The method requires a pair of low-resolution images, before and after the edit,

to fit the local transformations. An extension where the transformations are predicted

by a deep network, was proposed by Gharbi et al . [Gharbi et al., 2017]. To perform

a partial edit, a linear interpolation can be evaluated between the identity matrix and

the estimated linear transformations. Paired data is needed for both methods, and it

was generated by editing pictures using Photoshop filters and other image enhancement

tools. Therefore, these methods appear to be more suited for image enhancement.

While the previously discussed methods directly predict the intermediate representa-

tions, Zhu et al . [Zhu et al., 2016] train a low-resolution GAN and then fit a dense warp

field and local affine colour transformation between an input image and a GAN gener-

ated image at low resolution, 64×64. The generated image is created by reconstructing

a rough edited input image using the GAN generator, where an encoder is trained to

project input images to the generator latent space. The optimisation to find the warp

field and the local transformations does not have a closed form solution. Thus, the

authors employ an iterative method that fits either the warps or the local transforma-

tions on each step. Partial editing is supported as the method uses warp fields and

local affine colour transforms. However, the generator is unaware that these restricted

transformations will be fitted to its outputs, as it is trained with the standard GAN

framework. Therefore, its capacity is potentially wasted in learning how to generate

images that lead to edits that are not representable by such transformations.

Blendshape weights have also been used as an intermediate representation to edit ex-

pressions in the context of video reenactment [Thies et al., 2016]. This method uses a

handcrafted metric to compute the expression mapping in terms of blendshape weights.

An extension where the blendshape weights of a face were transformed by a Cycle-

GAN has been explored [Ma and Deng, 2018]. Similar to our approach, the blendshape

weights are resolution independent, and partial edits can be achieved by smoothly vary-

126

ing the blendshape weights. However, these methods require several input video frames

to reconstruct the face for the blendshape model.

Direct prediction at high resolution

A number of techniques have been proposed in order to scale deep image synthesis

methods to larger image resolutions. These include, synthesising images in a pyramid

of increasing resolutions [Denton et al., 2015], employing fully convolutional networks

trained on patches [Ledig et al., 2017], and directly in full resolution using multi-GPU

training with small batch sizes and long training times [Brock et al., 2019, Karras

et al., 2018] (approx 2 weeks for 512×512 and 1 month for 1024×1024). Image editing

applications using the aforementioned methods have been explored [Ignatov et al.,

2017, Portenier et al., 2018]. However, direct or pyramid-based approaches do not scale

well beyond modest resolutions, and training on patches assumes that global image

information is not needed for the edit. Moreover, these methods are only applicable at

similar resolutions as the training data that is was used to learn the model parameters.

A gradient descent based method for editing the image has also been explored [Up-

church et al., 2017]. The deep features of a pre-trained classifier network are extracted

for an input image. The features of neighbouring images containing the desired at-

tribute are also extracted. Both features are linearly interpolated, and the edited

image is produced by modifying the input using a gradient descent method until it

encodes to the interpolated features. Partial edits can be achieved by varying the in-

terpolation rate between the deep features. However, this approach starts failing when

the resolution of the test image differs significantly from the input data. Moreover

its applicability is limited, as generating a 1000×1000 image takes approximately 2

minutes on a high end desktop GPU.

StarGAN

As our model builds upon StarGAN [Choi et al., 2018], we define the method in more

detail in this section. In order to train a StarGAN model a dataset of labelled images

is needed. A single image is denoted by x, and each image has a set of associated

domains represented as a binary vector c. As we focus on semantic face editing, we

use semantic attributes to refer to the domains encoded in c. The model employs three

networks, a generator G(·), a discriminator D(·), and a classifier C(·). The generator,

127

G(x, c̄), transforms x to match the target attributes indicated by c̄ ∼ p(c), where p(c)

is the empirical distribution of binary attribute vectors, c. The model is trained with:

i. an adversarial loss:

Ladv = Ex [log(D(x))] + Ex,c̄ [log(1−D(G(x, c̄)))] , (4.1)

ii. a cycle consistency loss:

Lcycle = E(x,c),c̄ [‖x−G(G(x, c̄), c)‖1] , (4.2)

iii. and attribute classification losses:

Ldcls = E(x,c) [− log(C(x, c))] (4.3)

Lgcls = Ex,c̄ [− log(C(G(x, c̄), c̄))] , (4.4)

where C(x, c) is a discriminative function that outputs the probability that x has

associated attributes c. In the expectations, the data is sampled in pairs, when an

input image, x, is sampled, its corresponding attribute vector, c, is also taken, and this

is indicated as E(x,c)[·].

The classifier learns using the training set (eq. 4.3) and it also ensures the translated

image matches the target attributes (eq. 4.4). The adversarial loss (eq. 4.1) ensures

that the generated images are realistic, while the cycle consistency loss (eq. 4.2) is used

to avoid the trivial solution where the generator collapses to producing a single image

per attribute regardless of the input.

In practice due to the stability issues discussed in Section 2.5.1, in StarGAN the ad-

versarial loss (eq. 4.1) is substituted by the Wassertein distance objective (eq. 2.28):

Ladv = Ex [D(x)]− Ex,c̄ [D(G(x, c̄))] , (4.5)

and the Wasserstein gradient penalty term in eq. 2.30 is added to constrain the dis-

criminator to be a 1-Lipschitz continuous function.

128

Figure 4-3: Overview of our model, which consists of a generator, G, and a discrimi-
nator, D. The generator contains a warping network, W , and a warping operator, T .
The inputs to the warping network are an RGB image, x, and a target attribute vector,
c̄. The output is a dense warp field, w, which is used by T to deform the input image
and produce the output image, x̄. The discriminator evaluates both the input image,
x, and the generated image, x̄, for realism and the presence of attributes that agree
with the labels. In this example, the only change between c̄ and c is the label for the
attribute “big nose”.

4.3 Methodology

We employ the StarGAN [Choi et al., 2018] framework as the basis for our model, and

use the notation introduced in the previous section. We modify the generator such that

the set of transformations is restricted to non-linear warps of the input image:

G(x, c̄) = T (x,W (x, c̄)), (4.6)

where W (x, c̄) = w is a parametric function that generates the warp parameters. T is

a predefined warping function that applies a warp to an image. W is chosen to be a

neural network. An overview of our system is shown in Fig. 4-3.

4.3.1 Warp Parametrisations

The non-linear warp fields, w, can be parametrised in a number of different ways. Two

possible approaches are landmark-based and dense warps.

Landmark-based For landmark-based methods, displacements are defined only at

a sparse set of landmarks on the object to be deformed. A smooth dense warp field

can then be constructed through the use of interpolation techniques, such as thin-plate

splines [Bookstein, 1989] or mesh grids [Wolberg, 1998]. Such a parametrisation has

the advantage of predicting a reduced parameter set, making the model easier to train.

However, this comes at the cost of reduced deformation flexibility, as the number of

129

Figure 4-4: An example of typical landmark locations for face images. In particular,
49 face points that are detected, which are indicated by the blue crosses.

landmarks is usually much sparser than the number of pixels in the image, as shown in

Fig. 4-4. Additionally, this approach relies on accurate and robust landmark finding.

Dense warps A displacement vector at each pixel defines a dense warp, which allows

for arbitrary deformations of the input image. This gives flexibility at the cost of model

complexity. Such an approach by itself gives no guarantees on the smoothness of the

warp field, which is crucial for application at arbitrary resolutions. In order to ensure

smoothness, some regularisation terms must be employed.

Block-based warps Another option consists of defining a shared displacement vector

for a number of pixels in a neighbourhood. For example, a displacement vector for

every patch of four pixels in the image. This is suitable for settings where defining a

displacement vector per pixel is not desirable, and landmark information is not available

or applicable for the given data. Hence, the number of parameters to be predicted is

significantly reduced with respect to the aforementioned dense approach.

Constrained dense warps The flexibility of dense warps can be problematic. As

a result, several approaches to constrain the dense warps have been explored. For ex-

ample, invertibility is a desirable property that has been enforced by means of velocity

field parametrisations [Ceritoglu et al., 2013], which ensure that the warp transfor-

mations are diffeomorphic. An approach to avoid warps which would produce image

folding has also been proposed [Shu et al., 2018], by parametrising the warps by their

gradients and constraining the gradient values to be positive. In this parametrisation,

the displacements can be obtained by numerical integration of the gradients.

130

Discussion We choose to use dense warps, given their additional flexibility over the

landmark-based approach, which was found to be too restrictive in preliminary experi-

ments. The reduced number of parameters to be predicted in the block-based approach

would likely regularise the learning task for the neural network. However, this would

come at the cost of reduced performance, as the model would lose fine control over the

estimated warp fields. We empirically found that the block-based and the dense con-

strained approaches were not needed for our purposes, as the regularisation techniques

described in the following section proved to be sufficient. However, it is interesting to

notice that training the network with low resolution images and applying the warps

to higher resolution images during inference, as will be explained in Section 4.3.4, is

analogous to learning low resolution block-based warps from high resolution images.

4.3.2 Learning

We use the same adversarial loss (eq. 4.5), gradient penalty loss (eq. 2.30) and attribute

classification loss (eq. 4.3) as StarGAN.

Warp cycle loss The cycle consistency loss (eq. 4.2) is modified to produce warp

fields that are inverse consistent, i.e. the composition of the forward and backward

transformations yields an identity transformation:

Lcycle = E(x,c),c̄

[

‖T (T (A,w), w̄))−A‖22
]

, (4.7)

where w̄ = W (G(x, c̄), c) is a warp field that reverts the initial transformation, and

A is a two channel image where each pixel takes the value of its coordinates. This

loss provides additional guidance to the network in terms of dual learning [Shen and

Liu, 2017]. Also, it is more informative than equation 4.2, as a pixel loss provides no

information for warps inside constant colour regions.

Smoothness loss The generator network estimates an independent deformation per

pixel. Consequently, there are no guarantees that the learned warps will be smooth.

Smooth warps are desirable as they can be effectively upsampled to arbitrary resolu-

tions. Therefore, an L2 penalty on the gradients of the warp field is added to encourage

131

smoothness. In practice a finite-difference approximation is used as

Ls = Ex,c̄

1

n

∑

(i,j)∈P

‖wi+1,j − wi,j‖22 + ‖wi,j+1 − wi,j‖22

 , (4.8)

where P is the set of all pixels in the warp field, n is cardinality of P , and wi,j is the

displacement vector at pixel coordinates (i, j).

Additional regularisation Due to the lack of paired data, it has been observed

that image-to-image translation methods easily find undesirable correlations in the

data. Previous work [Mejjati et al., 2018, Pumarola et al., 2018] addressed this by

employing unsupervised attention mechanisms, which restrict the extent of the edits.

However, we did not observe this behaviour in our models. This is probably due to the

restriction of editing only by means of geometric deformations.

An additional issue with image-to-image translation models is the embedding of infor-

mation in the form of imperceptible high-frequency content in the edited images. This

is described in more detail in Section 2.6. Again, our model is unaffected by this, due

to only being able to manipulate the image via geometric deformations. Therefore, a

further advantage of our model with respect to pixel-based methods is that we do not

need to employ the triple consistency loss defined in equation 2.33. Qualitative results

demonstrating this are shown in Section 4.4.

Complete objective The joint losses for the discriminator and the generator are

defined as

LD = −Ladv + λgpLgp + λclsL
d
cls, (4.9)

LG = Ladv + λclsL
g
cls + λcycleLcycle + λsLs, (4.10)

where LD is the discriminator loss, LG is the generator loss and λcls, λgp, λcycle and λs

are hyper-parameters that control the relative strength of each loss.

4.3.3 Signed labels

As mentioned in Section 2.6, a StarGAN type model can change unexpected parts of

the image when editing specific attributes. At inference time, the classifier is used to

infer the labels for all of the attributes. Then, these labels can either be changed or

132

Figure 4-5: Use of binary attribute labels in a StarGAN model during training. The
edited attribute labels, c̄, are constructed by copying the values from the input attribute
labels, c, and changing the labels of one or more attributes to a target value. In this
case, the edited attributes are “big nose” and “pointy nose”, which are highlighted in
red. The generator and the classifier cannot distinguish between the edited and the
copied attributes, which encourages all attributes to be magnified. Especially noticeable
is the accentuation of the smile.

directly copied to the target vector, depending on the desired edits. This means that

the model cannot distinguish between the edited attributes and the copied ones, as

shown in Fig. 4-5. Thus, the model tends to accentuate the copied attributes, since

this increases the chances of being classified correctly by the discriminator.

In order to address this drawback, we propose to explicitly instruct the generator on

which attributes should be edited, as shown in Fig. 4-6. The target labels used as input

for the generator are transformed to contain three values, [−1, 0, 1], where −1 indicates

that the attribute should be reversed, 0 that it should remain unaffected, and 1 that

it should be added. We name these new target labels as signed labels, as they contain

positive and negative values.

This approach has two distinct benefits:

1. it leads to more localised edits, as the network is able to distinguish attributes

that should remain fixed from attributes that should be edited,

2. it removes the need for a classifier network during inference, as the unedited

entries in the signed target labels can be set to zero.

The classifier loss for the generator (initially defined in eq. 4.4) is modified to only

penalize the attributes that should be edited:

Lgcls = Ex,ĉ

[

−h
r−1
∑

i=0

|ĉi| log (C(G(x, ĉ), c̄i))
]

, (4.11)

133

Figure 4-6: Use of signed attribute labels during training. The attributes that should
remain fixed are set to 0 in the signed labels, ĉ, and the ones that should change are
set to their target value of 1 or −1. In this example, the target attributes are “big
nose” and “pointy nose”, which are highlighted in red. A label operator, B(·), which
is described in the text, converts the signed labels in ĉ, to binary labels in c̄. There is
no loss associated with the labels that were not changed, represented by a “?” in c̄.

where ĉ are the signed labels, r is the number of attributes, and h = r/‖ĉ‖1 is a nor-

malisation factor, which ensures that there is no bias with respect to the number of

edited attributes. During training, the signed target label for each attribute, ĉi, is sam-

pled independently from a Categorical distribution with probabilities [0.25, 0.5, 0.25].

A label operator, c̄i = B(ĉi), is used to transform the signed labels to binary labels,

which is defined as

B(ĉi) =

0, if ĉi = −1.

1, if ĉi = 1.
(4.12)

For ĉi = 0, the function does not need to be defined, as the classification loss for those

attributes is zero by construction.

The classification loss in equation 4.11 is used for images with several not mutually

exclusive binary attributes, and equation 4.4 is used otherwise.

4.3.4 Inference

Once the model parameters have been optimised, an input image, x, of arbitrary size

can be edited in a single forward pass of the network. The process is fully automated,

as the user only needs to specify the semantic attribute that they would like to edit. For

models that do not use the signed labels, the input attribute labels need to be inferred

by the classifier, as the labels for all attributes are needed for the generator as shown

134

Figure 4-7: Overview of inference at arbitrary resolutions with our model. The resolu-
tion is shown below each image. The input is a single RGB image, x, with an arbitrary
resolution. Automatic landmark detection is performed, and the detected landmarks
are used to align the image with the train data. One or more labels are set, in this
example “arched eyebrows”, to create the target attribute vector, ĉ, with the signed
labels. With this information, the warp network, W , produces a low resolution warp,
w, which is resized using the inverse alignment transformation. This resized warp field
is used to deform the original input image, generating the final result, x̄, at the original
resolution.

in Fig. 4-5. The inference process with signed labels is illustrated in Fig. 4-7, which

also includes an alignment step specific for faces that is explained in Section 4.4.1.

In a more general setting, where object landmarks are not available, inference proceeds

as follows. First, the input image is resized to match the resolution of the training

data, and the labels in ĉ, are set according to the target edit. Then, the resized image

and attribute vector with the target labels are fed into the warping network, which

produces a suitable warp field, w. The warp field displacement vectors are rescaled

and resampled to the original image resolution. Lastly, the original image is warped

using the resampled warp field to produce the final edited image.

Partial edits

Another advantage of our model is that once a warp field has been computed for an

input image, partial edits can be applied by simply scaling the predicted displacement

135

vectors by a scalar, α. Formally, this is defined as

G(x, ĉ, α) = T (x, αw) = x̄, (4.13)

where x is the input image, w =W (x, ĉ) the predicted warp field, and x̄ is the partial

edited image. This is a cheap operation as it does not require to run the network

for each new value of α, as the displacement field, w, is reused. For this reason, our

method allows for edits to be performed at interactive speeds, in contrast with previous

methods that allow for partial edits [Pumarola et al., 2018]. However, the edits are not

trivially composable, i.e. only a single attribute may be edited is this way, as editing

a second attribute requires composing the warps from both edits. This operation, if

done näıvely, would lead to unrealistic warps.

4.4 Results

In this section we evaluate the two contributions described in the section above. First,

we demonstrate editing at arbitrary resolutions by warping with an image-to-image

translation method trained with unpaired data. Including learning how to perform

partial edits from binary labelled data, and how to interpret the edits by providing

maps showing squashing and stretching due to the warp fields. Second, we demonstrate

the advantages of employing signed labels to avoid accentuating attributes that should

remain fixed.

4.4.1 Datasets

We evaluate our method and baselines quantitatively and qualitatively on two face

datasets, CelebA [Liu et al., 2015] and RafD [Langner et al., 2010].

Face alignment We make use of face landmark locations to align and resize the

images to 128×128 using a global affine transformation, at both training and test time.

Prediction of face landmark locations is a well studied problem, and there are several

off-the-shelf methods [King, 2009] to locate landmark points in a face. In particular,

we use an internal face landmark detection network to extract 49 points per face, as

shown in Fig. 4-4. Details of alignment at training time are provided below for each

dataset. At test time, the inverse of the aforementioned global affine transformation

is used to transform the warp fields, as shown in Fig. 4-7. The warp is then applied

136

Figure 4-8: Examples of the train images found on the CelebA dataset.

directly to the original image. This is in contrast with previous methods, that would

edit the aligned image and then warp the edited image to the original space.

CelebA The CelebA dataset [Liu et al., 2015] contains 202,599 images of faces and we

use the train/test split recommended by the authors. We use the aligned and cropped

version of the dataset, where the images have a size of 178×218. A few examples of

the images used for training are shown in Fig. 4-8. The faces are centre-cropped to

178×178, and resized to 128×128, following the protocol in Choi et al . [Choi et al.,

2018]. The face landmarks provided by the authors are limited to 5 points per face,

thus we employ our internal detection method during inference to extract the points for

aligning images that are not in the test set. Importantly, from the 40 binary attributes

provided, we choose the ones more amenable to be characterised by warping, namely:

smiling, big nose, arched eyebrows, narrow eyes and pointy nose.

RafD The RafD dataset [Langner et al., 2010] contains images of 67 subjects in 8

expressions, as shown in Fig. 4-9. For each expression, the subjects were recorded from

5 camera angles and with 3 different eye gaze directions. We discarded the two most

extreme camera angles, leaving a total of 4,824 images. Contrary to previous work [Choi

et al., 2018, Pumarola et al., 2018], which kept images from the same subject on the

train and test set, we reserve all images of subjects 58, 63, 64, 71 and 72 as test data.

Face landmarks were automatically detected in all images, the images were aligned to

the mean CelebA [Liu et al., 2015] face and resized to 128×128. We only consider

transformations from neutral to all other expressions and vice-versa.

Even though this dataset contains paired data we treat the images as unpaired. This

allows us to perform qualitative comparisons on the edits produced by the different

methods with respect to plausible targets. However, the images cannot be directly

employed for quantitative evaluations. This is due to global misalignment issues, as

shown in Fig. 4-9. Moreover, the space of edits is multi-modal, i.e. there are several

ways to express a facial expression, and the dataset only contains a single observation

for each expression per subject.

137

Neutral Angry Contemptuous Disgusted Fearful Happy Sad Surprised

Figure 4-9: Examples of the train images found on the RafD dataset for subject 5.
For each expression two additional images are recorded where the subject has different
gaze directions. In addition, each instance is also captured from two additional camera
angles.

4.4.2 Models

Our main baseline is StarGAN [Choi et al., 2018], a state of the art model for image-to-

image translation, which is also the most similar method to our approach. We define

three novel models to evaluate our contributions separately. WarpGAN is used to

denote models that output a warp field. We append a “+” to the name of all models

that employ signed labels. Thus, StarGAN+ is used to evaluate the effect of using

signed labels, and WarpGAN+ is our final proposed model.

An obvious alternative to our model consists of fitting a dense flow field to the results

generated by StarGAN. This approach is similar to the iGAN [Zhu et al., 2016] model,

which was discussed in Section 4.2. We tested it on CelebA using the dense optical flow

matching technique described in [Zach et al., 2007] and [Sánchez Pérez et al., 2013]3,

and we denote this method by SGFlow. An example of SGFlow is shown in Fig. 4-10,

where results for two values of the data term, λ, of the optical flow method [Zach

et al., 2007, Sánchez Pérez et al., 2013] are shown. Warping based on optical flow can

lead to artefacts when the method fails to find good correspondences. Constraining a

StarGAN model to generate images that are amenable to optical flow estimation is not

trivial. Thus, we do not consider this model in the remaining experiments.

We also experimented with the GANimation [Pumarola et al., 2018] approach using

the code provided by the authors. However, we were unable to generate meaningful

results when training the method with binary attributes. In the original work the

method was trained with the EmotioNet dataset [Benitez-Quiroz et al., 2016], which

is semi-automatically annotated with soft action unit attributes [Ekman and Friesen,

1976]. We therefore suspect that the method is heavily dependent on that type of data,

which specify facial expressions in great detail.

3An OpenCV implementation of the method is available as cv2.DualTVL1OpticalFlow create()

138

Input WarpGAN+ StarGAN SGFlow 0.05 SGFlow 0.15

Figure 4-10: Employing a dense flow method [Zach et al., 2007, Sánchez Pérez et al.,
2013] to transfer a “big nose” edit from StarGAN [Choi et al., 2018]. Results for the
flow method with λ = 0.05 and λ = 0.15 are shown. StarGAN has edited the input
to such lengths that good correspondences between the input and output cannot be
found by the flow method. A value of λ = 0.05 does not transfer enough content, while
λ = 0.15 produces visible artefacts, for example on the forehead.

4.4.3 Implementation details

All models were trained on a single Titan X GPU using the TensorFlow [Abadi et al.,

2015] framework. The Adam optimizer [Kingma and Ba, 2015] is used with a learning

rate of 0.0001, with β1 = 0.5 and β2 = 0.999. The model hyper-parameters are shared

for all datasets: λcls = 2, λgp = 10, λcycle = 10 and λs = 125.

The network architectures used are shown in the appendix in Tables B.1 and B.2.

During training, function T warps the input according to the generated displacement

field, w, using bilinear interpolation4. To improve image quality at inference time we

use a bicubic interpolant5, as an increase in quality in the upsampled warp field leads

to superior edits.

The networks were trained on CelebA for 20 epochs, and on RafD for 200 epochs (due

to the reduced size of this dataset). A batch size of 16 was used for all the experiments.

For data augmentation, the images are left-right flipped randomly.

For the StarGAN baseline we employ the implementation provided by the authors,

where we keep all their recommended hyper-parameters except for λcls = 0.25. The

choice of λcls, for StarGAN and our models, is informed by the results shown in Fig. 4-

14.

In StarGAN the discriminator weights are updated 5 times for each generator update, as

Wasserstein GAN [Arjovsky et al., 2017] methods are advised to train the discriminator

up to convergence. However, we found it sufficient for the WarpGAN models to train

the discriminator for a single step, for each generator step.

4T is implemented with TensorFlow as T (x,w) = tf.contrib.image.dense image warp(x, w).
5T is implemented with OpenCV as T (x,w) = cv2.remap(x, w, interpolation=cv2.INTER CUBIC).

139

4.4.4 Quantitative metrics

Quantitative evaluation is challenging for our setting. The use of unpaired data means

that we do not have target images to compare with the results of the model. For

datasets that have paired data, such as the RafD dataset, in principle, the target

images could be used to evaluate the method. However, as the model is free to learn

alternative plausible transformations, we could be penalising the model for generating

plausible yet different edits. Instead, we provide a methodology based on separately

trained models.

Attribute classifier network We train a classifier, Ĉ(·), for the image attributes

using the training data. The network has the same architecture as the classifier used

for StarGAN, and is trained with the cross entropy loss of equation 4.3. This classifier

is used to estimate quantitatively if the edited images have the requested attributes. It

achieves an average accuracy of 82.46% on the real test data; we note that the classifier

is indicative but should not be considered ground truth.

Face re-identification network We also use a pretrained face re-identification

model, Facenet [Schroff et al., 2015], to evaluate whether the edits preserve the subject’s

identity. In more detail, the Facenet model trained on the MS-Celeb-1M dataset [Guo

et al., 2016] is used. This dataset consists of 10 million images and 100k unique identi-

ties. As both CelebA and MS-Celeb-1M were collected from publicly available Internet

images, we expect some overlap between both datasets. This pretrained model is pro-

vided by the authors and is publicly available6.

Attribute accuracy The first metric that we use is the rate of images classified as

having the target attribute, which for methods employing binary labels is defined as

Lacu =
1

k

∑

x,c̄

[Ĉ(G(x, c̄), c̄) ≥ 0.5], (4.14)

where k is the number of elements in the test set. For the methods using signed labels,

the metric is similarly defined as

Lacu =
1

k

∑

x,ĉ

[C(G(x, ĉ), B(ĉ)) ≥ 0.5]. (4.15)

6 https://github.com/davidsandberg/facenet

140

https://github.com/davidsandberg/facenet

For each image, x, in the test set a random target attribute vector, c̄ or ĉ, is drawn.

The target attribute is constrained to edit only a single attribute in each image. Hence,

the classifier, Ĉ(·), is evaluated exclusively for that particular attribute.

Identity score The second metric is an identity preservation score, which for meth-

ods employing binary labels is defined as

Lid =
1

k

∑

x,c̄

[

1− ‖ψ(x)−ψ(G(x, c̄))‖22
]

, (4.16)

and for the methods using signed labels is similarly defined as

Lid =
1

k

∑

x,ĉ

[

1− ‖ψ(x)−ψ(G(x, ĉ))‖22
]

, (4.17)

where ψ(·) are the features in the last layer of the face re-identification network. A

distance larger than 1.2 (score lower than −0.2) has been used to indicate that two

faces belong to different people [Schroff et al., 2015].

There is a trade-off between attribute accuracy and identity score. On one extreme,

a new face that has the target attribute and does not match the original face would

achieve maximal attribute accuracy with negative identity score. On the other, not

modifying the input image has maximal identity score, yet it does not achieve the

target edit. A perfect model would modify the image just enough to contain the target

attribute, thus, maintaining as much content as possible from the input into the edited

image.

4.4.5 Ablation study

An ablation study was performed where different versions of the model were trained by

removing one of the losses. Qualitative results are shown in Fig. 4-11, where a common

image is edited by each of the models. Without the cycle loss, Lcycle, the model is

not encouraged to generate invertible transformations, which leads to artefacts in the

images. Removing the smoothness loss, Ls, seems to have little effect, yet, this is needed

for applying the warps at higher resolutions. Without the adversarial loss, Ladv, the

model produces images that are less realistic. We qualitatively observed this in our

experiments, and in this example, it is particularly noticeable for the “smile” attribute.

Removing the classification loss, Lcls, leaves the generator with a trivial solution, i.e.

141

Input (w/o) Lcycle (w/o) Ls (w/o) Ladv (w/o) Lcls (pixel) Lcycle Full

No
smile

Big
nose

Arched
eyebrows

Narrowed
eyes

Pointy
nose

Figure 4-11: Ablation study, where we remove different losses in our model. It can be
seen that all the losses play a part in generating realistic edits.

the network predicts an identity transformation. Additionally, we also experimented

with substituting our warp-based cycle loss (equation 4.7) with the pixel-based cycle

loss (equation 4.2) of StarGAN, and denote this experiment as (pixel) Lcycle.

In order to quantitatively evaluate the effect of each loss in the model, the attribute

accuracy and the identity score are reported in Fig. 4-12, for the different ablated

models. It can be seen how removing each loss has a negative effect either on the

attribute or the identity score with respect to the full model. There is an exception

when removing the adversarial loss, Ladv. However, the identity score does not model

realism directly. This can be seen qualitatively in Fig. 4-11, where the edited image for

the “smile” attribute appear less realistic without this loss.

Our warp-based cycle loss seems to have little to no effect under the attribute accuracy

and identity score metrics. However, there are several advantages of using this loss

instead of the pixel-based alternative. On a theoretical level it is more coherent to have

a loss on the parameters that are estimated by the model, rather than on a surrogate

task. We also expect invertible geometric transformations to be better behaved during

partial edits. Finally, the loss is more informative for areas of similar colours, i.e. under

142

0.0 0.2 0.4 0.6 0.8 1.0
Attribute accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Id
e
n
ti

ty
 s

c
o
re

(w/o) Ladv

(w/o) Lcycle

(w/o) Ls

(w/o) Lcls

(pixel) Lcycle

Full

Figure 4-12: Presence of the edited attribute (x-axis) vs face re-identification score
(y-axis), higher is better for both axes. Removing each loss in our model has a detri-
mental effect in either accuracy or identity preservation. Based on these metrics, the
adversarial loss and our warp-based cycle loss seem to have little effect. However, we
qualitatively observed that without the adversarial loss, the edited images were less
realistic. The effects of the warp-cycle loss will be further analysed in Fig. 4-13a.

a pixel-based cycle loss, the model is free to permute the pixels without incurring a

cost under this loss. In order to quantitatively analyse the last effect, we measure the

smoothness on the displacement vectors in similar colour regions, as shown in Fig. 4-13a.

The input images are segmented into super-pixels using the approach of [Achanta et al.,

2012], and a super-pixel is considered to contain similar colour pixels if the standard

deviation averaged across channels is smaller than 0.1 for pixel values in the range

[−1, 1]. Additionally, a skin segmentation network is employed to only select the pixels

in the image that belong to the face, as our model does not in general warp regions of the

image outside of the face area. Hence, the smoothness loss of equation 4.8 is evaluated

only for displacements of similar coloured regions inside the face. A mild increase in

smoothness of the predicted warps can be observed in the model that employs our

warp-based cycle loss, thus empirically demonstrating our hypothesis. Note that both

models are also trained with the smoothness loss in equation 4.8, which might explain

why there is not a larger gap between both models. The mean displacement magnitude

in those regions is also reported in Fig. 4-13b. This shows how the model using the

pixel-based cycle loss is estimating very small warps in those areas, which are probably

inconsequential for the editing operation.

143

(pixel) Lcycle Full

0

10 3

10 2

10 1

100

S
m

o
o

th
n

e
s
s
 l

o
s
s
 (

p
ix

e
ls

2
)

(a) Smoothness of the displacement vec-
tors, where the unit for the y-axis is pixels2,
lower is smoother.

(pixel) Lcycle Full

10 3

10 2

10 1

100

M
e

a
n

 d
is

p
la

c
e

m
e

n
t

m
a

g
n

it
u

d
e

 (
p

ix
e

ls
)

(b) Mean displacement magnitude of the
displacement vectors, where the unit for
the y-axis is pixels.

Figure 4-13: Quantitative comparison of a WarpGAN+ model trained with the pixel-
based cycle loss (equation 4.2), and with the warp-based cycle loss (equation 4.7). The
smoothness and average magnitude of the displacement vectors in the warp field for
similar coloured regions in the face are shown. Note that the axis is on a logarithmic
scale. Employing our proposed warp-based cycle loss leads to smoother warps in those
regions and that contain fewer very small (and presumably pointless) displacements.

4.4.6 Quantitative results

In this section we evaluate our model with respect to previous work. This is done in

terms of the attribute accuracy and identity score metrics that were defined in the

previous section, and with a user study to estimate perceptual results. For this set of

experiments the same attribute per image is edited for all models.

Accuracy vs identity preservation The attribute accuracy and the identity preser-

vation score are plotted for StarGAN, StarGAN+ and WarpGAN+ for a range of

λcls values, as shown in Fig. 4-14. An ideal editing model would be located on the

top-right. Changing StarGAN to use signed labels (StarGAN+) moves the curve to-

wards higher attribute accuracy with comparable identity score. Our warping approach

(WarpGAN+) allows for stronger identity preservation than StarGAN+. Overall, our

approach better preserves identity than StarGAN, for similar levels of attribute accu-

racy. For the rest of the experiments, we picked λcls based on these results: choosing

the value that leads to both higher attribute accuracy and identity score.

144

0.0 0.2 0.4 0.6 0.8 1.0
Attribute accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Id
e
n
ti

ty
 s

c
o
re

0.1

0.25

0.5

1

0.1

0.25

0.5

1

0.1

1

2

10

StarGAN

StarGAN+

WarpGAN+

Real

Figure 4-14: Presence of the edited attribute (x-axis) vs face re-identification score
(y-axis), higher is better for both axes. The classification loss weight, λcls, is shown on
top of each marker. Highlighted in grey is the value used by the StarGAN authors for
this dataset, and in purple the ones used in this chapter. Compared to previous work,
our model produces edits that better preserve identity.

Accuracy vs realism The attribute accuracy does not provide a ground truth an-

swer to whether the images contain the target attribute. Moreover, the identity score

measures how close two images are, yet, it does not model the perceptual realism of

the edited image. A useful editing model has a high-level of realism and can produce

the target edit. In order to quantitatively evaluate both aspects, we perform a user

study on Amazon Mechanical Turk (MTurk) to evaluate the quality of the generated

images, for StarGAN, StarGAN+ and our model. For each method, we use the same

250 test images from CelebA and edit the same attribute per image.

We conducted two experiments, one to evaluate the realism of the images, where the

workers had to answer whether the image presented was real or fake, and another to

evaluate attribute editing, where we asked the workers whether the image presents

the target attribute. In both experiments, the workers were randomly shown a single

image at a time: either an edited image or an unaltered original image. To evaluate

the reliability of the workers, a number of easy to classify images were mixed with the

data, and used as a control. Workers needed to give the right answer to at least 90%

of the control images for their data to be considered reliable. Images with fewer than

3 annotations are discarded, as they are considered unreliable data. Finally, a simple

majority voting scheme was used to determine the classification of each image.

145

0.0 0.2 0.4 0.6 0.8 1.0

Attribute accuracy

0.0

0.2

0.4

0.6

0.8

1.0

R
e
a
li
s
m

StarGAN

StarGAN+

WarpGAN+

Real

Average

Smiling

Big nose

Arched eyebrows

Narrow eyes

Pointy nose

Figure 4-15: Human perception of the presence of the desired attribute (attribute
accuracy) vs realism of the image, as indicated by the user study, higher is better for
both axes. Images generated by our model are more realistic than those generated by
previous work.

For both experiments, example images were shown to the workers for guidance before

commencing the task. For the experiment evaluating realism, typical failure cases for

all models were shown as examples of fake images. For the evaluation of the presence of

the target attribute, curated examples from training data edited with our model were

shown. This allows showing two images per attribute for guidance, where the only

difference is the presence or lack of the attribute, as both depict the same subject.

Some images in the CelebA dataset contain border artifacts due to the alignment

process that the authors used for the aligned version of the dataset. An example of

such artifacts can be seen in the first image in Fig. 4-8. In order to get more reliable

results, none of these images were included in the pool of 250 images used for the

experiments.

Results of this user study are shown Fig. 4-15. For the real data, the workers were able

to evaluate reliably the image realism, however they were often inconsistent with the

original attribute labels. Nonetheless, the workers’ performance on real data should

not be taken as an upper bound for two reasons. First, the images in the dataset were

annotated by a professional annotation company, while we employed untrained MTurk

workers in our experiments. Second, as all methods tend to generate exaggerated edits

to ensure that the images are classified correctly, the edited images are easier to classify

than the original images. For the editing models, the attribute accuracy is consistent

146

0.0 0.2 0.4 0.6 0.8 1.0
Attribute accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Id
e
n
ti

ty
 s

c
o
re

0.5

0.75

1.0

1.5

StarGAN

StarGAN+

WarpGAN+

Real

WarpGAN+

Figure 4-16: Presence of the edited attribute (x-axis) vs face re-identification score
(y-axis), higher is better for both axes. For all models except WarpGAN+α, this figure
is identical to Fig. 4-14. For WarpGAN+α the value of α is shown on top of each
marker. Modifying the α value at test time in our model has a similar effect as training
the model with different λcls values.

to that reported by the classifier network in Fig. 4-14. However, identity score and

realism do not align, as they measure different notions. An image might contain only

small edits, which the identity network is invariant to, yet those edits could include

unrealistic artefacts that can be easily detected by humans. All editing models achieve

good attribute accuracy, where the room for improvement is mostly on the realism axis.

Our model (WarpGAN+) produces realistic results for most attributes, and it is able

to generate images that are more realistic than StarGAN.

Effect of α We quantitatively evaluate the effect of scaling the displacement fields by

a scalar α. For this experiment, we take WarpGAN+ trained with λcls = 0.25 and we

evaluate the identity score and the attribute accuracy on the test set for different values

of α. Results are shown in Fig. 4-16 for this model, which is denoted as WarpGAN+α.

The curve produced by employing different values of α is very similar to the curve

in Fig. 4-14, which was produced by modifying λcls. Hence, for λcls = 2.0, a similar

effect to changing the value of λcls used during training can be achieved by choosing

an alternative value of α at test time. This is in contrast to previous work [Zhu et al.,

2017, Choi et al., 2018], where modifying the strength of the effects requires training a

model with the new parameters.

147

Model 128×128 256×256 512×512 1024×1024 2048×2048

StarGAN 19.9 79.7 318.9 1275.4 5101.8

WarpGAN 26.3 26.3 26.3 26.3 26.5

Table 4.2: Comparison of model efficiency for StarGAN and WarpGAN for different
image sizes. The number of floating point operations (GFLOPs) required to edit an
image is shown, lower is better. In each column the first row indicates the input
image resolution. The warping step in our method introduces additional operations
when operating at the resolution of the training images, 128×128. However, the cost
remains mostly constant in our method as the resolution increases, as only the warping
operation is performed at the resolution of the input image.

Model complexity and efficiency Model complexity is measured by the number

of learnable parameters in the neural networks. In StarGAN and WarpGAN this is

almost identical, as the only change in the network architecture appears on the last

layer, which in StarGAN in an RGB image with three channels, and in WarpGAN

is a dense flow field of two channels. In more detail, there are 8,434,243 trainable

parameters in the generator network in StarGAN, and 8,431,106 in the generator of

WarpGAN.

Model efficiency is measured by the number of floating point operations (GFLOPs)

required to process an input image, and it is shown in Table 4.2. As the neural network

architectures are fully convolutional, this is the cost of running the network for an input

image of the given resolution. In WarpGAN, there is a moderate increase in GFLOPs

when operating at the lowest resolution, due to the the warping operation. Contrary

to StarGAN, in our method the cost of editing is mostly independent of the image

resolution, as estimating the flow fields at the training data resolution has a constant

complexity. Note that this is a generous comparison for StarGAN, as it is unlikely that

a network with the same number of learnable parameters would be able to learn the

transformations at resolutions which differ significantly from 128×128. Therefore, the

larger network that would be required, would further increase the computational cost

in StarGAN.

4.4.7 Qualitative results

We show qualitative results on the CelebA dataset in Fig. 4-17. For each input image,

we show the edited images corresponding to changing a single attribute. In order to

give an intuition of the quantitative metrics used in the previous section, the attribute

148

Input Smile
Big
nose

Arched
eyebrows

Narrowed
eyes

No pointy
nose

0.58/1.00 0.76/0.99 0.29/1.00 0.61/1.00 0.86/0.01

S
ta
rG

A
N

0.79/1.00 0.76/1.00 0.39/1.00 0.82/1.00 0.85/0.73

S
ta
rG

A
N
+

0.86/0.94 0.72/1.00 0.65/0.99 0.81/0.88 0.85/0.75

W
a
rp

G
A
N
+

Figure 4-17: Comparison to previous work on the CelebA dataset. For a given in-
put image, first column, each method attempts to transfer the semantic attribute in
its corresponding column. The identity score and attribute probability are shown as
(id/cls) on top of each image (higher is better for both). These scores were defined
in section 4.4.6. Our approach edits the attributes of the input images while better
preserving the identity of the subject. Please see the supplemental material for videos
of these edits7.

accuracy and the identity score are shown on top of each image. StarGAN [Choi et al.,

2018] often changes characteristics that are not related to the edited attributes, such

as the skin tone or the background colour. StarGAN+ produces more localised edits

than StarGAN. Our approach generates changes that are less exaggerated, and better

preserve the identity of the subject.

Qualitative results are shown for the RafD dataset on Fig. 4-18. As this dataset con-

tains paired data, we can compare the edited images with plausible targets. For some

of the expressions, our model produces more realistic edits than previous work. In ad-

dition, we can apply our results seamlessly at the original image resolution of 580×540,

denoted as WarpGAN-HR, in contrast to the 128×128 resolution of StarGAN. However,

in this dataset the subjects were recorded while enacting extreme expressions. This

demonstrates the limits of editing by warping, as many of these extreme expressions re-

quire edits that cannot be modelled well by geometric deformations alone. For example,

previously occluded content that becomes visible after the change in expression.

7https://garoe.github.io/thesis/supplement/animated_edits.html

149

https://garoe.github.io/thesis/supplement/animated_edits.html

Input Angry Contemptuous Disgusted Fearful Happy Sad Surprised Neutral

O
ri
g
in

a
l-
H
R

S
ta

rG
A
N

W
a
r
p
G

A
N

W
a
r
p
G

A
N

-H
R

Figure 4-18: Comparison to previous work on the RafD dataset. For a given input
image, first column, each method attempts to change to the expression in its corre-
sponding column. This dataset contains paired examples, which we show in the top
row. StarGAN is limited to operate at a fixed resolution (128×128), while our approach
can be applied at the original resolution (580×540). Please see the supplemental ma-
terial for videos of these edits6. (Zoom in for details)

Results for an in-the-wild image downloaded from Flickr are shown in Fig. 4-19. This

demonstrates the power of the warping representation by operating at a far higher

resolution (3456×5184) than can be achieved by direct methods. Please see the sup-

plemental material for animated edits.

150

Input Arched eyebrows Smiling

Figure 4-19: Semantic image editing at high resolution (2950×3450). The user requests
a change in a semantic attribute and the input image is automatically transformed by
our method into the attribute in the corresponding column. The intensity of edit is
adjusted by a scalar hyper-parameter, α, which we set to 1.5 and 0.5, respectively. The
identity and fine details of the original input are preserved. Please see the supplemental
material for videos of these edits6. (Zoom in for details)8

α = −0.5 α = 0.0 α = 0.25 α = 0.50 α = 0.75 α = 1.00 α = 1.25

Smile

Not
smile

Figure 4-20: Partial editing with our model, for the “smile” attribute. A single warp
is generated by our model, which is interpolated and extrapolated by scaling the mag-
nitude of the displacement vectors by α. The input image, corresponding to α=0, is
progressively edited in both directions. Please see the supplemental material for videos
of these edits6.

Partial edits Results of interpolation and extrapolation of warp fields generated by

our model are shown in Fig. 4-20. In order to obtain these results, a single warp field

per input image is generated by the network. The displacement vectors in the warp

field are scaled by α as described in equation 4.13. The intermediate images vary

smoothly in a realistic fashion, while preserving the identity of the subject. Moreover,

extrapolation can be achieved by employing an α value outside of the [0, 1] range.

8Input image courtesy of Flickr user Dawolf.

151

Input
No arched
eyebrows

No
smile

Big
nose

x ẋ x̄ x̄

S
ta
rG

A
N

W
a
rp

G
A
N
+

Figure 4-21: Composing edits, where the input image, x, is first edited to “no arched
eyebrows”, ẋ = G(x, ċ). The “no arched eyebrows” image, ẋ, is edited a second
time, c̄ = G(ẋ, c̄), to the corresponding semantic attribute. As it has been previously
demonstrated [Sanchez and Valstar, 2018], StarGAN [Choi et al., 2018] always tries
to reconstruct the input, ignoring the labels in the second image transfer operation.
In contrast, our method, due to its regularization via warping, is able to transfer the
attributes in all cases.

Edit composition Composition of edits consists of editing an image repeatedly. For

example, first changing the shape of the nose, and then change the shape of the eyebrows

using the previously edited image as input, where the expected result is an image that

contains both edits. Using the model in this way is demonstrated in Fig. 4-21. Formally

this is defined as

x̄ = G(G(x, ċ), c̄), (4.18)

where x is the input image, ċ is an intermediate attribute vector, ĉ is the final attribute

vector, and x̄ is the final edited image. For simplicity of notation, this is defined with

respect to traditional binary labels, and it is obvious how to state it using signed labels.

It would be expected that the model would edit the image consistently, regardless of

any intermediate editing steps. Formally, this can be expressed as

G(G(x, ċ), c̄) ≈ G(x, c̄). (4.19)

However, as demonstrated in Sanchez and Valstar [Sanchez and Valstar, 2018], Star-

GAN ignores the final target attributes, c̄, and reconstructs the original image in all

cases, as shown in Fig. 4-21. On the other hand, our model is unable to “hide” infor-

mation on the edited images, as the edit operations are limited to warping. Thus, our

method transfers the desired attributes in all the images.

152

Input
Arched
eyebrows

Stretch
map

Overlay

W
a
rp

G
A
N

− 1.00

− 0.75

− 0.50

− 0.25

0.00

0.25

0.50

0.75

1.00

W
a
rp

G
A
N
+

− 1.00

− 0.75

− 0.50

− 0.25

0.00

0.25

0.50

0.75

1.00

W
a
rp

G
A
N

− 1.00

− 0.75

− 0.50

− 0.25

0.00

0.25

0.50

0.75

1.00

W
a
rp

G
A
N
+

− 1.00

− 0.75

− 0.50

− 0.25

0.00

0.25

0.50

0.75

1.00

Figure 4-22: Stretch maps computed from the warp fields, for both WarpGAN and
WarpGAN+. The log determinant of the Jacobian of the warp is shown, where blue
indicates stretching and red corresponds to squashing. The signed labels used by
WarpGAN+, leads to correctly localized edits, as opposed to the binary labels used by
WarpGAN.

Visualising warp fields A further advantage of our model is the interpretability of

its edits. This is demonstrated in Fig. 4-22, where we show the log determinant of the

Jacobian of the warp field, which shows image squashing and stretching. It can be seen

how employing signed labels leads to more localised edits. Moreover, the values from

the stretch maps can potentially be used to automatically determine which areas have

been stretched or compressed excessively by the network.

Please see appendix B.3 for additional qualitative results.

4.5 Discussion

In this chapter a novel way to describe semantic image edits from unpaired data using

warp fields was introduced. We have demonstrated that, despite limitations on the set

of edits that can be described using warping alone, there are several clear advantages

153

Zoomed to the head

Input
Beak smaller
than head

Beak larger
than head

Input
Beak smaller
than head

Beak larger
than head

Figure 4-23: Preliminary results from our model on test images from the Cub200
dataset [Wah et al., 2011]. The model attempts to transfer the attribute (relative beak
size) in each column to the input image. For easiness of comparison, a crop of the head
area is shown in the last three columns.

to modelling edits in this way: they better preserve the identity of the subject, they

allow for partial edits, and they are applicable at arbitrary resolutions.

In this chapter the model was only evaluated on aligned face data. An important

question is whether the model is general enough to be successfully applied to other

types of images. In order to test this, we performed some preliminary experiments on

the Cub200 dataset [Wah et al., 2011]. This dataset contains 11,788 images of 200

bird species taken in the wild. The images are annotated with 15 body part locations,

312 binary attributes, and semantic masks of the bird body. The train/test split

recommended by the authors uses 5,994 images for training, and the remaining 5,794

for testing. In a similar fashion as the datasets used in this chapter, the bird faces are

aligned with an affine transform with common scaling and cropped to 128 × 128 using

four landmark locations: the beak, the crown, the forehead and the right eye. If the

right eye is not visible, the image is left-right flipped. For all images, the background

is removed using the semantic masks.

Results of the model on this dataset are shown in Fig. 4-23, for the attribute “beak

size relative to head”. As the size is relative between two parts, it can be observed how

154

the model learns to edit both the head and the beak in order transfer the requested

attribute. Interestingly, in the fourth row, the model learns that larger eyes generally

correspond to bigger heads, and edits the image accordingly. Still, this dataset is more

complex and contains significantly fewer images than the CelebA dataset, which leads

to deformations that are not always realistic, such as the neck areas in the second and

third rows.

There are several avenues for future work, including different parametrisations for the

warps, e.g . in the form of velocity fields [Ceritoglu et al., 2013], which ensures that the

deformations are diffeomorphic. It might be the case that for data outside of the domain

of faces, additional regularisation in this form might be needed. It is also possible that

it would remove the need for the smoothness regularisation loss, as non-smooth warps

are not invertible.

Additional intermediate representations that upsample well could be added to increase

the model flexibility, such as local colour transformations [Chen et al., 2016]. This

would allow the model to perform a wider range of edits, without sacrificing the ability

to operate at arbitrary resolutions. Moreover, the viability of the approach has already

been demonstrated [Gharbi et al., 2017], albeit with the constrains of assuming access

to paired data, and that the edits on each image patch are independent from other

patches.

An alternative avenue of future work could look at employing image inpainting meth-

ods [Pathak et al., 2016, Yang et al., 2017, Gilbert et al., 2018, Liu et al., 2018] in

conjunction with our model. These methods could be applied only on small areas were

the warp field has stretched or squashed the image excessively. These regions could

be automatically detected with the log determinant of the Jacobian maps shown in

the previous section. Moreover, by applying the method only on a small region, this

approach would potentially alleviate their problems to scale to high-resolution images.

155

Chapter 5

Conclusions

5.1 Summary of contributions

In this thesis we have investigated two models that can learn semantic image trans-

formations from data: a fully unsupervised generative model that included structured

uncertainty prediction on its outputs, and a discriminative model that learns warp

fields from unpaired data. We have discussed how these models can be used as the

basis for an image editing application. In this chapter we summarise the contributions

introduced in this thesis, and examine possible avenues of future work.

5.1.1 Structured uncertainty prediction

A model to learn structured uncertainty from reconstruction residuals was presented

in Chapter 3. This is an unsupervised deep generative model; thus it is able to learn

a latent space from which new images may be sampled. The learned latent space may

also be used for interpolations, where face frontalisation was illustrated by a latent

space interpolation between an image and its x-flipped mirror image.

We demonstrated that a dense covariance matrix, which has a spatially localised sparse

inverse, can be tractably learned from a single residual image in deep generative models

with a multivariate Gaussian likelihood. Samples from the pixel uncertainty distribu-

tion were shown to generate more plausible residual images, and the model was able

to generalise these predictions to test data.

The learning task posed a severely unconstrained problem, and two approaches were

156

proposed in order to regularise the problem. The first approach consisted of training

two separate models, where one model learns how to estimate the mean of the Gaus-

sian distributions, assuming a factorised Gaussian model (as is standard for VAEs).

Subsequently, a separate model learns the structured distribution of the residual im-

ages, which involves estimating a sparse inverse matrix. The model for the mean of the

Gaussian distributions was trained and fixed. Then, the structured uncertainty model

is trained separately. This proved to be a reliable way to fit these models to image

data. The second approach allowed learning both the mean and inverse covariance of

the multivariate Gaussian distributions in a joint fashion, with the help of two regulari-

sation functions. This reduced the overall number of parameters needed for the model,

and in some cases, it appeared to improve quality of the learned latent space.

The model was quantitatively evaluated by reporting the likelihood on a test set, which

is a typical metric in fully unsupervised generative models, as discussed in Section 1.3.

The likelihood, evaluated with the covariance matrices estimated by the model, was

similar to the one evaluated with ground truth covariance matrices on synthetic data.

Moreover, when evaluated on real images, both of our models achieved better likeli-

hoods than previous work.

5.1.2 WarpGAN

Amodel to learn warp fields for image editing was discussed in Chapter 4. By employing

recent advances in adversarial networks [Goodfellow et al., 2014, Zhu et al., 2017], it

does not require ground truth target images indicating how the edited images should

look like.

We demonstrated that warp fields can be tractably learned from unpaired data and ap-

plied at arbitrary resolutions. Editing in this way provides additional benefits typically

associated with warp fields. Namely, it results in a model that is more interpretable

and easier to regularise than pixel-based methods. Additionally, efficient training of the

model with low resolution images, 128×128, was demonstrated, which can subsequently

be applied for inference with arbitrary resolution images.

As this model was designed specifically for image editing, it was evaluated with the

metrics introduced in Section 1.3. Namely, by means of user studies, and with auto-

mated methods for detecting the presence of the edit, as well as identity scores. It was

demonstrated under these metrics that the method is able to generate edits that are

more realistic than previous work, and that are better at preserving the identity of the

157

subject in the image.

5.2 Limitations and future work

Despite significant progress in the area of learning semantic image transformations

from data, there are several limitations in current methods. In Chapters 1 and 2,

we discussed how deep generative models are of interest for this task. In particular,

Variational Autoencoders (VAE) [Rezende et al., 2014, Kingma and Welling, 2014] and

Generative Adversarial Networks (GAN) [Goodfellow et al., 2014]. Moreover, regression

approaches using GANs are also popular [Isola et al., 2017], and within those, unpaired

image-to-image translation methods [Zhu et al., 2017] are particularly relevant. In this

section, we discuss limitations and future work for these models, with a focus on the

solutions presented in this thesis.

5.2.1 Variational Autoencoders (VAE)

Variational Autoencoders [Rezende et al., 2014, Kingma and Welling, 2014] were shown

to be a powerful model to learn latent representations from data. However, one of the

main limitations in the VAE-based models is that they are known to generate blurry

outputs. Previous work [Larsen et al., 2016, Huang et al., 2018] attempted to address

this issue by combining the model with GANs. However, this brought a number of

limitations in GANs into these hybrid models. Namely, difficulty in training and mode

collapse [Goodfellow, 2016].

In Chapter 3 a method to alleviate the issue of blurry outputs was presented, which was

based on learning a structured residual distribution. However, training a VAE in this

way proved to be a difficult task, and the approach did not perform well with complex

data. A limitation of the structured uncertainty model lies in the linear assumption on

the dependencies between the pixels in the residual. Therefore, an interesting avenue

of future work would be to extend the model such that the data dependencies are

nonlinear. An additional drawback lies in how the quality of the images generated by

the model depended heavily on the value of the hyper-parameters used. Another line of

work could explore learning these parameters from data in a fully automated fashion.

Moreover, the noise due to limitations in the model, and the intrinsic noise in the data

were entangled in the residual. Learning to disentangle these sources of reconstruction

uncertainty could be interesting, as usually we would want to add the noise due to

158

model limitations to the generated image, while the intrinsic noise is not of interest.

Samples from a VAE model are drawn using ancestral sampling. First, generating a

latent space vector by sampling from the prior distribution, and then projecting the

latent space vector to image space using the decoder, and a sample from the likelihood

distribution in image space is drawn to produce the output image. A limitation in these

models is that it is assumed that, after training, the latent space will closely follow the

prior distribution. Empirically, this does not occur [Xu et al., 2019], and it usually

leads to poor quality samples, as shown in Chapter 3. From an editing perspective this

might cause a loss of quality in the edited images, as image manipulation is performed

by interpolating in the latent space.

Recently, several methods that attempt to address this issue have been proposed [Tom-

czak and Welling, 2018, Xu et al., 2019, Klushyn et al., 2019]. These approaches follow

a Bayesian route, where hierarchical priors are used, i.e. the parameters of the prior

distribution are learned, and hyper-prior distributions are employed on those param-

eters. The latent space learned by these models is more complex and tends to better

reflect the structure of the data. However, the training procedure becomes more brittle,

and frequently involves tuning additional model parameters.

The model in Chapter 3 helped to some degree with the original issue, as a better data

fit means that the model can devote more capacity to learn encodings in the latent

space that better follow the prior. Still, measuring the quality of the latent space is

not a well defined problem [Higgins et al., 2017].

5.2.2 Unpaired image-to-image translation models

Unpaired image-to-image translation models [Zhu et al., 2017] use generative adversar-

ial networks (GAN) [Goodfellow et al., 2014]. GANs are capable of generating realistic

images at large resolutions [Karras et al., 2018]. Despite much effort [Arjovsky et al.,

2017], these models are still difficult to train, lack an inference mechanism, and are

known to suffer from mode collapse.

Unpaired image-to-image translation methods [Zhu et al., 2017] diminish some of these

issues by employing the model in a more restricted regression setting. The generator

now takes as input an image from an initial domain, and is tasked to transform the

image, such that it resembles an image from a second domain. As an image contains

much more information than the latent space vectors used in the original GAN models,

the job of the generator network is simplified. The use of additional losses, such as the

159

cycle-loss [Zhu et al., 2017], makes training the network more stable, as the networks

receive more information in the gradients. Moreover, as the output must resemble the

input while also being edited, mode collapse manifests as the network is applying the

same edit to different images, which in most cases is not a problem.

Despite this, unpaired image-to-image translation models have several limitations.

Weak labels contain much less information than pixel-wise labels, the model only

knowns that the image belongs to a given domain, and it is easy for it to pick up

undesired intra-domain correlations. This leads to the model producing images that

maximise the chance of being classified as belonging to the target domain, by per-

forming exaggerated edits. The model presented in Chapter 4 partially addressed this

issue in the restricted case of transformations that only require geometric deformations.

However, even for those cases, there is no guarantee that the network will only learn

the image transformation that we are interested in.

The uni-modality of the edits is another important issue, as for most image transfor-

mation there exists a plethora of plausible ways to achieve a realistic edit that fulfils

the target criteria. Some approaches have been proposed [Ghosh et al., 2018, Chen

et al., 2019] to extended the model such that it can generate multiple outputs from

a single image. However, these methods offer limited control over the variations and

assume that there exists a fixed number of variations in all cases.

A problem found in these models, which is also shared by most deep learning methods,

is the limitation to only be able to operate at the same resolution that they were trained

with. The method discussed in Chapter 4 introduced a way to address this by means

of upsampling geometric transformations. However, this severely limits the type of

edits that the network was able to model. Additional resolution independent image

transformations tools exist [Chen et al., 2016, Guenter et al., 1998], and exploring

principled ways to include them under this framework is a possible avenue of future

work. In this case, our model may be viewed as the building block of a more general

editing system, where the edits could be divided into a warping step and a colour

transformation step. Our model would perform the warping step of the edit, while one

of these methods would perform the colour transformation step.

Resolution independent methods can also be interpreted as ameliorating the issues

raised by the over-parametrisation of deep neural networks. It has been empirically

demonstrated [LeCun et al., 1990, Hassibi and Stork, 1993, Han et al., 2015, Li et al.,

2017b] that large networks can be pruned down to significantly smaller networks with

minimal loss in accuracy. This indicates that there is a significant amount of redun-

160

dancies in current models, which in practice translates into considerable computational

inefficiencies. Yet, attempts at directly training smaller networks have proven unfruit-

ful. Accordingly, with current methods, large networks are needed in order to achieve

good performance [Frankle and Carbin, 2019]. An interesting avenue of work would

be to provide means that would allow the smaller networks to be directly trained

to achieve the performance of pruned networks. For example, by improving current

stochastic gradient descent methods, or by adding regularisation losses.

5.3 Final conclusions

In this thesis, we have explored techniques for learning image transformations from

data for applications in image editing with semantic controls. The models employed

state-of-the-art deep learning methods, which allowed them to achieve good perfor-

mance and generalisation to test data. In a broad way, we can question the validity

of using deep learning methods. A critique of these models from the machine learning

perspective is the use of point estimates for the parameters (maximum likelihood ap-

proach). Contrary to previous methods, in most settings with deep neural networks,

overfitting to the training data does not imply poor performance on test data. The

current interpretation is that the networks are highly non-linear interpolators of the

training data (or their learned features). Hence, with more training data the generali-

sation improves. However, there are many regimes where large amounts of data is not

available, usually, due to the costs associated with the data labelling process.

Despite their limitations, Bayesian neural networks [Neal, 2012] are a promising direc-

tion of work that addresses this issue. This methodology has the potential of providing

the good performance of deep neural networks, while adding uncertainty estimates,

and guarantees against overfitting. Still, Bayesian networks are significantly harder

to train than standard neural networks, both in terms of stability and computational

resources. Moreover, these networks usually make factorised Gaussian assumptions on

the distribution of the networks weights [Wu et al., 2019]. We believe that an approach

inspired by the work presented in Chapter 3 might help with some of the issues found

in these networks.

A different focus of research can be placed on the human part of the editing system, as

these editing models should be useful for human users. The approach of learning image

transformations with semantic sliders, exemplified by PortraitPro c©, is well suited for

image editing on personal computers. However, nowadays it is common to take a

161

picture with a smartphone, perform some local editing, and share the image directly

from the device, without using a desktop computer. The type of interfaces appropriate

for image editing on these devices is significantly different than those used for desktop

computers, as there are severe limitations in terms of screen space and due to the

touch-based interactions with the system.

An avenue of future work would be to explore automated high-level techniques that

could be applied in this setting, where many of the considerations for the models that

have been used in this thesis still apply, in particular for the method presented in

Chapter 4. For example, being able to generate photo-realistic results or producing

edited images at interactive speeds. In summary, learning image transformations from

data is a promising field for providing user friendly systems for image editing, and we

hope that the work published in this thesis will inspire further research in this area.

162

Bibliography

[Abadi et al., 2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,

C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I.,

Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-

enberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M.,

Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasude-

van, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y.,

and Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous

systems. Software available from tensorflow.org.

[Achanta et al., 2012] Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and

Süsstrunk, S. (2012). SLIC superpixels compared to state-of-the-art superpixel meth-

ods. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),

34(11):2274–2282.

[Achille and Soatto, 2018] Achille, A. and Soatto, S. (2018). Information dropout:

Learning optimal representations through noisy computation. IEEE Transactions

on Pattern Analysis and Machine Intelligence (PAMI), 40(12):2897–2905.

[Agarwala et al., 2004] Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Col-

burn, A., Curless, B., Salesin, D., and Cohen, M. (2004). Interactive digital pho-

tomontage. ACM Transactions on Graphics (TOG), 23(3):294–302.

[Alemi et al., 2017] Alemi, A. A., Fischer, I., Dillon, J. V., and Murphy, K. (2017).

Deep variational information bottleneck. The International Conference on Learning

Representations (ICLR).

[Arjovsky and Bottou, 2017] Arjovsky, M. and Bottou, L. (2017). Towards principled

methods for training generative adversarial networks. The International Conference

on Learning Representations (ICLR).

163

[Arjovsky et al., 2017] Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein

generative adversarial networks. In The International Conference on Machine Learn-

ing (ICML), volume 70, pages 214–223, Sydney. PMLR.

[Averbuch-Elor et al., 2017] Averbuch-Elor, H., Cohen-Or, D., Kopf, J., and Cohen,

M. F. (2017). Bringing portraits to life. ACM Transactions on Graphics (TOG),

36(6):196.

[Barron et al., 2015] Barron, J. T., Adams, A., Shih, Y., and Hernandez, C. (2015).

Fast bilateral-space stereo for synthetic defocus. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR).

[Bartholomew et al., 2011] Bartholomew, D., Knott, M., and Moustaki, I. (2011). La-

tent variable models and factor analysis: a unified approach; 3rd ed. Wiley series in

probability and statistics. Wiley, Chichester.

[Beier and Neely, 1992] Beier, T. and Neely, S. (1992). Feature-based image metamor-

phosis. SIGGRAPH ’92, 26(2):35–42.

[Bengio et al., 2014] Bengio, Y., Laufer, E., Alain, G., and Yosinski, J. (2014). Deep

generative stochastic networks trainable by backprop. In The International Confer-

ence on Machine Learning (ICML), volume 32 of Proceedings of Machine Learning

Research, pages 226–234, Bejing, China. PMLR.

[Benitez-Quiroz et al., 2016] Benitez-Quiroz, C. F., Srinivasan, R., and Martinez,

A. M. (2016). EmotioNet: An accurate, real-time algorithm for the automatic an-

notation of a million facial expressions in the wild. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR).

[Bertalmio et al., 2000] Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C.

(2000). Image inpainting. In Proceedings of the 27th Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH ’00, pages 417–424.

[Bishop, 2006] Bishop, C. M. (2006). Pattern recognition and machine learning.

Springer.

[Blanz and Vetter, 1999] Blanz, V. and Vetter, T. (1999). A morphable model for the

synthesis of 3D faces. In Proceedings of the 26th Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH ’99, pages 187–194.

164

[Bookstein, 1989] Bookstein, F. L. (1989). Principal warps: Thin-plate splines and

the decomposition of deformations. IEEE Transactions on Pattern Analysis and

Machine Intelligence (PAMI), 11(6):567–585.

[Boyadzhiev et al., 2015] Boyadzhiev, I., Bala, K., Paris, S., and Adelson, E. (2015).

Band-sifting decomposition for image-based material editing. ACM Transactions on

Graphics (TOG), 34(5):163:1–163:16.

[Brock et al., 2019] Brock, A., Donahue, J., and Simonyan, K. (2019). Large scale GAN

training for high fidelity natural image synthesis. In The International Conference

on Learning Representations (ICLR).

[Brock et al., 2017] Brock, A., Lim, T., Ritchie, J., and Weston, N. (2017). Neural

photo editing with introspective adversarial networks. The International Conference

on Learning Representations (ICLR).

[Burda et al., 2016] Burda, Y., Grosse, R., and Salakhutdinov, R. (2016). Importance

weighted autoencoders. The International Conference on Learning Representations

(ICLR).

[Ceritoglu et al., 2013] Ceritoglu, C., Tang, X., Chow, M., Hadjiabadi, D., Shah, D.,

Brown, T., Burhanullah, M., Trinh, H., Hsu, J., Ament, K., Crocetti, D., Mori, S.,

Mostofsky, S., Yantis, S., Miller, M., and Tilak Ratnanather, J. (2013). Computa-

tional analysis of LDDMM for brain mapping. Frontiers in Neuroscience, (7).

[Chandra and Kokkinos, 2016] Chandra, S. and Kokkinos, I. (2016). Fast, exact and

multi-scale inference for semantic image segmentation with deep Gaussian CRFs. In

The European Conference on Computer Vision (ECCV), pages 402–418.

[Chandra et al., 2017] Chandra, S., Usunier, N., and Kokkinos, I. (2017). Dense and

low-rank Gaussian CRFs using deep embeddings. In The IEEE International Con-

ference on Computer Vision (ICCV).

[Chen et al., 2016] Chen, J., Adams, A., Wadhwa, N., and Hasinoff, S. W. (2016).

Bilateral guided upsampling. ACM Transactions on Graphics (TOG), 35(6):203:1–

203:8.

[Chen et al., 2018a] Chen, T. Q., Li, X., Grosse, R. B., and Duvenaud, D. K. (2018a).

Isolating sources of disentanglement in variational autoencoders. In Advances in

Neural Information Processing Systems (NeurIPS), pages 2615–2625. Curran Asso-

ciates, Inc.

165

[Chen et al., 2017] Chen, X., Kingma, D. P., Salimans, T., Duan, Y., Dhariwal, P.,

Schulman, J., Sutskever, I., and Abbeel, P. (2017). Variational lossy autoencoder.

The International Conference on Learning Representations (ICLR).

[Chen et al., 2018b] Chen, Y.-C., Lin, H., Shu, M., Li, R., Tao, X., Shen, X., Ye,

Y., and Jia, J. (2018b). Facelet-bank for fast portrait manipulation. In The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).

[Chen et al., 2019] Chen, Y.-C., Xu, X., Tian, Z., and Jia, J. (2019). Homomorphic

latent space interpolation for unpaired image-to-image translation. In The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).

[Choi et al., 2018] Choi, Y., Choi, M., Kim, M., Ha, J.-W., Kim, S., and Choo, J.

(2018). StarGAN: Unified generative adversarial networks for multi-domain image-

to-image translation. In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).

[Chu et al., 2017] Chu, C., Zhmoginov, A., and Sandler, M. (2017). CycleGAN: a

master of steganography. arXiv preprint:1712.02950.

[Cootes et al., 1998] Cootes, T. F., Edwards, G. J., and Taylor, C. J. (1998). Ac-

tive appearance models. In Computer Vision — ECCV’98, pages 484–498, Berlin,

Heidelberg. Springer Berlin Heidelberg.

[Cottrell et al., 1987] Cottrell, G. W., Munro, P., and Zipser, D. (1987). Learning inter-

nal representations from gray-scale images: An example of extensional programming.

In Conference of the Cognitive Science Society.

[Cremer et al., 2018] Cremer, C., Li, X., and Duvenaud, D. (2018). Inference subop-

timality in variational autoencoders. In The International Conference on Machine

Learning (ICML), volume 80 of Proceedings of Machine Learning Research, pages

1078–1086. PMLR.

[Cremer et al., 2017] Cremer, C., Morris, Q., and Duvenaud, D. (2017). Reinterpreting

importance-weighted autoencoders. Workshop track - The International Conference

on Learning Representations (ICLR).

[Criminisi et al., 2004] Criminisi, A., Perez, P., and Toyama, K. (2004). Region filling

and object removal by exemplar-based image inpainting. IEEE Transactions on

Image Processing, 13(9):1200–1212.

166

[Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal

function. Mathematics of Control, Signals and Systems, 2(4):303–314.

[Dekel et al., 2018] Dekel, T., Gan, C., Krishnan, D., Liu, C., and Freeman, W. T.

(2018). Sparse, smart contours to represent and edit images. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR).

[Denton et al., 2015] Denton, E. L., Chintala, S., szlam, a., and Fergus, R. (2015).

Deep generative image models using a laplacian pyramid of adversarial networks.

In Advances in Neural Information Processing Systems (NIPS), pages 1486–1494.

Curran Associates, Inc.

[Dillon et al., 2017] Dillon, J. V., Langmore, I., Tran, D., Brevdo, E., Vasudevan, S.,

Moore, D., Patton, B., Alemi, A., Hoffman, M., and Saurous, R. A. (2017). Tensor-

flow distributions. arXiv preprint:1711.10604.

[Dinh et al., 2017] Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Density esti-

mation using real NVP. The International Conference on Learning Representations

(ICLR).

[Doersch, 2016] Doersch, C. (2016). Tutorial on variational autoencoders. arXiv

preprint:1606.05908.

[Donahue et al., 2017] Donahue, J., Krähenbühl, P., and Darrell, T. (2017). Adver-

sarial feature learning. The International Conference on Learning Representations

(ICLR).

[Dorta et al., 2018a] Dorta, G., Campbell, N. D. F., and Simpson, I. (2018a). Method

of modifying digital images. UK Patent, Application Number 1818759.1.

[Dorta et al., 2018b] Dorta, G., Vicente, S., Agapito, L., Campbell, N. D. F., and

Simpson, I. (2018b). Structured uncertainty prediction networks. In The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).

[Dorta et al., 2018c] Dorta, G., Vicente, S., Agapito, L., Campbell, N. D. F.,

and Simpson, I. (2018c). Training VAEs under structured residuals. arXiv

preprint:1804.01050.

[Dorta et al., 2020] Dorta, G., Vicente, S., Campbell, N. D. F., and Simpson, J. A. I.

(2020). The GAN that warped: Semantic attribute editing with unpaired data. In

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

167

[Dumoulin et al., 2017] Dumoulin, V., Belghazi, I., Poole, B., Lamb, A., Arjovsky, M.,

Mastropietro, O., and Courville, A. (2017). Adversarially learned inference. The

International Conference on Learning Representations (ICLR).

[Dziugaite et al., 2015] Dziugaite, G. K., Roy, D. M., and Ghahramani, Z. (2015).

Training generative neural networks via maximummean discrepancy optimization. In

Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence,

UAI’15, pages 258–267. AUAI Press.

[Ekman and Friesen, 1976] Ekman, P. and Friesen, W. V. (1976). Measuring facial

movement. Environmental psychology and nonverbal behavior, 1(1):56–75.

[Esmaeili et al., 2018] Esmaeili, B., Wu, H., Jain, S., Bozkurt, A., Siddharth, N., Paige,

B., Brooks, D. H., Dy, J., and van de Meent, J.-W. (2018). Structured disentangled

representations. arXiv preprint:1804.02086.

[Frankle and Carbin, 2019] Frankle, J. and Carbin, M. (2019). The lottery ticket hy-

pothesis: Finding sparse, trainable neural networks. The International Conference

on Learning Representations (ICLR).

[Ganin et al., 2016] Ganin, Y., Kononenko, D., Sungatullina, D., and Lempitsky, V.

(2016). DeepWarp: Photorealistic image resynthesis for gaze manipulation. In The

European Conference on Computer Vision (ECCV), pages 311–326, Cham. Springer

International Publishing.

[Garrido et al., 2013] Garrido, P., Valgaerts, L., Wu, C., and Theobalt, C. (2013).

Reconstructing detailed dynamic face geometry from monocular video. ACM Trans-

actions on Graphics (TOG), 32(6):158:1–158:10.

[Gatys et al., 2015] Gatys, L., Ecker, A. S., and Bethge, M. (2015). Texture synthesis

using convolutional neural networks. In Advances in Neural Information Processing

Systems (NIPS), pages 262–270. Curran Associates, Inc.

[Gelman and Hill, 2007] Gelman, A. and Hill, J. (2007). Data Analysis using Regres-

sion and Multilevel/Hierarchical Models. Analytical methods for social research.

Cambridge University Press.

[Geng et al., 2018] Geng, J., Shao, T., Zheng, Y., Weng, Y., and Zhou, K. (2018).

Warp-guided GANs for single-photo facial animation. ACM Transactions on Graph-

ics (TOG), 37(6).

168

[Germain et al., 2015] Germain, M., Gregor, K., Murray, I., and Larochelle, H. (2015).

MADE: Masked autoencoder for distribution estimation. In The International Con-

ference on Machine Learning (ICML), volume 37 of Proceedings of Machine Learning

Research, pages 881–889. PMLR.

[Gharbi et al., 2017] Gharbi, M., Chen, J., Barron, J. T., Hasinoff, S. W., and Du-

rand, F. (2017). Deep bilateral learning for real-time image enhancement. ACM

Transactions on Graphics (TOG), 36(4):118.

[Ghosh et al., 2018] Ghosh, A., Kulharia, V., Namboodiri, V. P., Torr, P. H., and

Dokania, P. K. (2018). Multi-agent diverse generative adversarial networks. In The

IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[Gilbert et al., 2018] Gilbert, A., Collomosse, J., Jin, H., and Price, B. (2018). Dis-

entangling structure and aesthetics for style-aware image completion. In The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).

[Godard et al., 2017] Godard, C., Mac Aodha, O., and Brostow, G. J. (2017). Un-

supervised monocular depth estimation with left-right consistency. In The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).

[Goodfellow, 2016] Goodfellow, I. (2016). NIPS 2016 tutorial: Generative adversarial

networks. arXiv preprint:1701.00160.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep

Learning. MIT Press.

[Goodfellow et al., 2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-

Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial

nets. In Advances in Neural Information Processing Systems (NIPS), pages 2672–

2680.

[Guenter et al., 1998] Guenter, B., Grimm, C., Wood, D., Malvar, H., and Pighin, F.

(1998). Making faces. In Proceedings of the 25th Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH ’98, pages 55–66.

[Gulrajani et al., 2017a] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and

Courville, A. C. (2017a). Improved training of wasserstein GANs. In Advances

in Neural Information Processing Systems (NIPS), pages 5767–5777. Curran Asso-

ciates, Inc.

169

[Gulrajani et al., 2017b] Gulrajani, I., Kumar, K., Ahmed, F., Taiga, A. A., Visin,

F., Vazquez, D., and Courville, A. (2017b). PixelVAE: A Latent Variable Model for

Natural Images. The International Conference on Learning Representations (ICLR).

[Guo and Sim, 2009] Guo, D. and Sim, T. (2009). Digital face makeup by example. In

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

73–79.

[Guo et al., 2016] Guo, Y., Zhang, L., Hu, Y., He, X., and Gao, J. (2016). MS-Celeb-

1M: A dataset and benchmark for large scale face recognition. In The European

Conference on Computer Vision (ECCV). Springer.

[Han et al., 2015] Han, S., Pool, J., Tran, J., and Dally, W. (2015). Learning both

weights and connections for efficient neural network. In Advances in Neural Infor-

mation Processing Systems (NIPS), pages 1135–1143. Curran Associates, Inc.

[Hassibi and Stork, 1993] Hassibi, B. and Stork, D. G. (1993). Second order derivatives

for network pruning: Optimal brain surgeon. In Advances in Neural Information

Processing Systems (NIPS), pages 164–171.

[Heusel et al., 2017] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and

Hochreiter, S. (2017). GANs trained by a two time-scale update rule converge to

a local Nash equilibrium. In Advances in Neural Information Processing Systems

(NIPS), pages 6626–6637. Curran Associates, Inc.

[Higgins et al., 2017] Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X.,

Botvinick, M., Mohamed, S., and Lerchner, A. (2017). beta-VAE: Learning ba-

sic visual concepts with a constrained variational framework. The International

Conference on Learning Representations (ICLR).

[Hornik et al., 1989] Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer

feedforward networks are universal approximators. Neural Networks, 2(5):359 – 366.

[Hou et al., 2017] Hou, X., Shen, L., Sun, K., and Qiu, G. (2017). Deep feature con-

sistent variational autoencoder. In The IEEE Winter Conference on Applications of

Computer Vision (WACV), pages 1133–1141.

[Huang et al., 2018] Huang, H., li, z., He, R., Sun, Z., and Tan, T. (2018). IntroVAE:

Introspective variational autoencoders for photographic image synthesis. In Ad-

vances in Neural Information Processing Systems (NeurIPS), pages 52–63. Curran

Associates, Inc.

170

[Huszar, 2017] Huszar, F. (2017). Gaussian distributions are soap bub-

bles. https://www.inference.vc/high-dimensional-gaussian-distributions-are-soap-

bubble/.

[Ignatov et al., 2017] Ignatov, A., Kobyshev, N., Timofte, R., Vanhoey, K., and

Van Gool, L. (2017). WESPE: weakly supervised photo enhancer for digital cameras.

arXiv preprint:1709.01118.

[Ioffe and Szegedy, 2015] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-

celerating deep network training by reducing internal covariate shift. In The Inter-

national Conference on Machine Learning (ICML), pages 448–456.

[Isola et al., 2017] Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017). Image-to-

image translation with conditional adversarial networks. The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR).

[Jancsary et al., 2012] Jancsary, J., Nowozin, S., Sharp, T., and Rother, C. (2012). Re-

gression tree fields an efficient, non-parametric approach to image labeling problems.

In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 2376–2383.

[Joshi et al., 2010] Joshi, N., Matusik, W., Adelson, E. H., and Kriegman, D. J. (2010).

Personal photo enhancement using example images. ACM Transactions on Graphics

(TOG), 29(2):12:1–12:15.

[Karras et al., 2018] Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2018). Progres-

sive growing of GANs for improved quality, stability, and variation. The International

Conference on Learning Representations (ICLR).

[Karras et al., 2019] Karras, T., Laine, S., and Aila, T. (2019). A style-based gener-

ator architecture for generative adversarial networks. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR).

[Kemelmacher-Shlizerman et al., 2014] Kemelmacher-Shlizerman, I., Suwajanakorn,

S., and Seitz, S. M. (2014). Illumination-aware age progression. In The IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR).

[Kendall and Gal, 2017] Kendall, A. and Gal, Y. (2017). What uncertainties do we

need in bayesian deep learning for computer vision? In Advances in Neural Infor-

mation Processing Systems (NIPS).

171

[Kim et al., 2018] Kim, H., Garrido, P., Tewari, A., Xu, W., Thies, J., Niessner, M.,

Pérez, P., Richardt, C., Zollhöfer, M., and Theobalt, C. (2018). Deep video portraits.

ACM Transactions on Graphics (TOG), 37(4).

[Kim and Mnih, 2018] Kim, H. and Mnih, A. (2018). Disentangling by factorising.

In The International Conference on Machine Learning (ICML), volume 80, pages

2649–2658.

[King, 2009] King, D. E. (2009). Dlib-ml: A machine learning toolkit. Journal of

Machine Learning Research (JMLR), 10:1755–1758.

[Kingma and Ba, 2015] Kingma, D. and Ba, J. (2015). Adam: A method for stochastic

optimization. The International Conference on Learning Representations (ICLR).

[Kingma and Dhariwal, 2018] Kingma, D. P. and Dhariwal, P. (2018). Glow: Gen-

erative flow with invertible 1x1 convolutions. In Advances in Neural Information

Processing Systems (NeurIPS), pages 10236–10245. Curran Associates, Inc.

[Kingma et al., 2016] Kingma, D. P., Salimans, T., and Welling, M. (2016). Improving

variational inference with inverse autoregressive flow. Advances in Neural Informa-

tion Processing Systems (NIPS).

[Kingma and Welling, 2014] Kingma, D. P. and Welling, M. (2014). Auto-encoding

variational bayes. The International Conference on Learning Representations

(ICLR).

[Klushyn et al., 2019] Klushyn, A., Chen, N., Kurle, R., Cseke, B., and van der Smagt,

P. (2019). Learning hierarchical priors in VAEs. arXiv preprint:1905.04982.

[Kumar et al., 2018] Kumar, A., Sattigeri, P., and Balakrishnan, A. (2018). Varia-

tional inference of disentangled latent concepts from unlabeled observations. In The

International Conference on Learning Representations (ICLR).

[Langner et al., 2010] Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D. H. J.,

Hawk, S. T., and van Knippenberg, A. (2010). Presentation and validation of the

Radboud faces database. Cognition and Emotion, 24(8):1377–1388.

[Larsen et al., 2016] Larsen, A. B. L., Sønderby, S. K., and Winther, O. (2016). Au-

toencoding beyond pixels using a learned similarity metric. In The International

Conference on Machine Learning (ICML), volume 48, pages 1558–1566. JMLR.

172

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).

Gradient-based learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324.

[LeCun et al., 1990] LeCun, Y., Denker, J. S., and Solla, S. A. (1990). Optimal brain

damage. In Advances in Neural Information Processing Systems (NIPS), pages 598–

605.

[Ledig et al., 2017] Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A.,

Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., and Shi, W. (2017). Photo-

realistic single image super-resolution using a generative adversarial network. In The

IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[Li et al., 2017a] Li, C.-L., Chang, W.-C., Cheng, Y., Yang, Y., and Poczos, B. (2017a).

MMD GAN: Towards deeper understanding of moment matching network. In Ad-

vances in Neural Information Processing Systems (NIPS), pages 2203–2213. Curran

Associates, Inc.

[Li et al., 2017b] Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P. (2017b).

Pruning filters for efficient convnets. The International Conference on Learning

Representations (ICLR).

[Li et al., 2015] Li, Y., Swersky, K., and Zemel, R. (2015). Generative moment match-

ing networks. In The International Conference on Machine Learning (ICML), vol-

ume 37 of Proceedings of Machine Learning Research, pages 1718–1727, Lille, France.

PMLR.

[Lin et al., 2018] Lin, C.-H., Yumer, E., Wang, O., Shechtman, E., and Lucey, S.

(2018). ST-GAN: Spatial transformer generative adversarial networks for image

compositing. In The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

[Liu et al., 2018] Liu, G., Reda, F. A., Shih, K. J., Wang, T.-C., Tao, A., and Catan-

zaro, B. (2018). Image inpainting for irregular holes using partial convolutions. In

The European Conference on Computer Vision (ECCV).

[Liu et al., 2015] Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep learning face

attributes in the wild. In The IEEE International Conference on Computer Vision

(ICCV).

173

[Liu et al., 2001] Liu, Z., Shan, Y., and Zhang, Z. (2001). Expressive expression map-

ping with ratio images. In Proceedings of the 28th annual conference on Computer

graphics and interactive techniques, pages 271–276. ACM.

[Lopez et al., 2018] Lopez, R., Regier, J., Jordan, M. I., and Yosef, N. (2018). In-

formation constraints on auto-encoding variational bayes. In Advances in Neural

Information Processing Systems (NeurIPS), pages 6117–6128. Curran Associates,

Inc.

[Luc et al., 2016] Luc, P., Couprie, C., Chintala, S., and Verbeek, J. (2016). Seman-

tic Segmentation using Adversarial Networks. In NIPS Workshop on Adversarial

Training, Barcelona, Spain.

[Lucic et al., 2018] Lucic, M., Kurach, K., Michalski, M., Gelly, S., and Bousquet,

O. (2018). Are GANs created equal? a large-scale study. In Advances in Neural

Information Processing Systems (NeurIPS), pages 700–709. Curran Associates, Inc.

[Lunn et al., 2012] Lunn, D., Jackson, C., Best, N., Spiegelhalter, D., and Thomas, A.

(2012). The BUGS book: A practical introduction to Bayesian analysis. Chapman

and Hall/CRC.

[Ma and Deng, 2018] Ma, L. and Deng, Z. (2018). Real-time facial expression trans-

formation for monocular RGB video. Computer Graphics Forum, 38(1):470–481.

[MacKay, 1992] MacKay, D. J. C. (1992). Bayesian interpolation. Neural Computation,

4(3):415–447.

[Mackay, 1995] Mackay, D. J. C. (1995). Probable networks and plausible predictions

a review of practical bayesian methods for supervised neural networks. Network:

Computation in Neural Systems, 6(3):469–505.

[Makhzani and Frey, 2017] Makhzani, A. and Frey, B. J. (2017). PixelGAN autoen-

coders. In Advances in Neural Information Processing Systems (NIPS), pages 1975–

1985. Curran Associates, Inc.

[Mejjati et al., 2018] Mejjati, Y. A., Richardt, C., Tompkin, J., Cosker, D., and Kim,

K. I. (2018). Unsupervised attention-guided image to image translation. In Advances

in Neural Information Processing Systems (NeurIPS). Curran Associates, Inc.

[Mescheder et al., 2017] Mescheder, L., Nowozin, S., and Geiger, A. (2017). Adversar-

ial variational bayes: Unifying variational autoencoders and generative adversarial

networks. In The International Conference on Machine Learning (ICML).

174

[Metz et al., 2017] Metz, L., Poole, B., Pfau, D., and Sohl-Dickstein, J. (2017). Un-

rolled generative adversarial networks. The International Conference on Learning

Representations (ICLR).

[Miyato et al., 2018] Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. (2018).

Spectral normalization for generative adversarial networks. In The International

Conference on Learning Representations (ICLR).

[Mohammed et al., 2009] Mohammed, U., Prince, S. J., and Kautz, J. (2009). Visio-

lization: generating novel facial images. ACM Transactions on Graphics (TOG),

28(3):57.

[Mori et al., 2012] Mori, M., MacDorman, K. F., and Kageki, N. (2012). The uncanny

valley [from the field]. IEEE Robotics Automation Magazine, 19(2):98–100.

[Müller, 1997] Müller, A. (1997). Integral probability metrics and their generating

classes of functions. Advances in Applied Probability, 29(2):429443.

[Murphy, 2012] Murphy, K. P. (2012). Machine learning: a probabilistic perspective.

The MIT press.

[Nagano et al., 2018] Nagano, K., Seo, J., Xing, J., Wei, L., Li, Z., Saito, S., Agar-

wal, A., Fursund, J., and Li, H. (2018). PaGAN: Real-time avatars using dynamic

textures. ACM Transactions on Graphics (TOG), 37(6).

[Nair and Hinton, 2010] Nair, V. and Hinton, G. E. (2010). Rectified linear units im-

prove restricted boltzmann machines. In The International Conference on Machine

Learning (ICML), pages 807–814.

[Nakagami, 1960] Nakagami, M. (1960). The m-distributiona general formula of in-

tensity distribution of rapid fading. In Hoffman, W., editor, Statistical Methods in

Radio Wave Propagation, pages 3 – 36. Pergamon.

[Neal, 2012] Neal, R. M. (2012). Bayesian learning for neural networks, volume 118.

Springer Science & Business Media.

[Nguyen et al., 2008] Nguyen, M. H., Lalonde, J.-F., Efros, A. A., and De la Torre, F.

(2008). Image-based shaving. Computer Graphics Forum, 27(2):627–635.

[Nikias and Pan, 1988] Nikias, C. L. and Pan, R. (1988). Time delay estimation in un-

known gaussian spatially correlated noise. IEEE Transactions on Acoustics, Speech,

and Signal Processing, 36(11):1706–1714.

175

[Nowozin et al., 2016] Nowozin, S., Cseke, B., and Tomioka, R. (2016). f-GAN: Train-

ing generative neural samplers using variational divergence minimization. In Ad-

vances in Neural Information Processing Systems (NIPS), pages 271–279. Curran

Associates, Inc.

[Odena et al., 2017] Odena, A., Olah, C., and Shlens, J. (2017). Conditional image

synthesis with auxiliary classifier GANs. In ICML, volume 70, pages 2642–2651.

JMLR.

[Oord et al., 2016] Oord, A., Kalchbrenner, N., and Kavukcuoglu, K. (2016). Pixel

recurrent neural networks. The International Conference on Machine Learning

(ICML).

[Pathak et al., 2016] Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., and Efros,

A. A. (2016). Context encoders: Feature learning by inpainting. In The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).

[Pérez et al., 2003] Pérez, P., Gangnet, M., and Blake, A. (2003). Poisson image edit-

ing. ACM Transactions on Graphics (TOG), 22(3):313–318.

[Portenier et al., 2018] Portenier, T., Hu, Q., Szabó, A., Bigdeli, S. A., Favaro, P.,

and Zwicker, M. (2018). Faceshop: Deep sketch-based face image editing. ACM

Transactions on Graphics (TOG), 37(4):99:1–99:13.

[Prokudin et al., 2018] Prokudin, S., Gehler, P., and Nowozin, S. (2018). Deep direc-

tional statistics: Pose estimation with uncertainty quantification. In The European

Conference on Computer Vision (ECCV).

[Pu et al., 2017a] Pu, Y., Gan, Z., Henao, R., Li, C., Han, S., and Carin, L. (2017a).

VAE learning via Stein variational gradient descent. Advances in Neural Information

Processing Systems (NIPS).

[Pu et al., 2017b] Pu, Y., Wang, W., Henao, R., Chen, L., Gan, Z., Li, C., and Carin,

L. (2017b). Adversarial symmetric variational autoencoder. Advances in Neural

Information Processing Systems (NIPS).

[Pumarola et al., 2018] Pumarola, A., Agudo, A., Martinez, A., Sanfeliu, A., and

Moreno-Noguer, F. (2018). GANimation: Anatomically-aware facial animation from

a single image. In The European Conference on Computer Vision (ECCV).

176

[Qian et al., 2019] Qian, S., Lin, K.-Y., Wu, W., Liu, Y., Wang, Q., Shen, F., Qian, C.,

and He, R. (2019). Make a face: Towards arbitrary high fidelity face manipulation.

In The IEEE International Conference on Computer Vision (ICCV).

[Rabin et al., 2012] Rabin, J., Peyré, G., Delon, J., and Bernot, M. (2012). Wasserstein

barycenter and its application to texture mixing. In Scale Space and Variational

Methods in Computer Vision, pages 435–446, Berlin, Heidelberg. Springer Berlin

Heidelberg.

[Radford et al., 2016] Radford, A., Metz, L., and Chintala, S. (2016). Unsupervised

representation learning with deep convolutional generative adversarial networks. The

International Conference on Learning Representations (ICLR).

[Rainforth et al., 2018] Rainforth, T., Kosiorek, A., Le, T. A., Maddison, C., Igl, M.,

Wood, F., and Teh, Y. W. (2018). Tighter variational bounds are not necessarily

better. In The International Conference on Machine Learning (ICML), volume 80,

pages 4277–4285.

[Ranzato et al., 2007] Ranzato, M., Huang, F.-J., Boureau, Y.-L., and LeCun., Y.

(2007). Unsupervised learning of invariant feature hierarchies with applications to

object recognition. In The IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR).

[Rasmussen and Williams, 2006] Rasmussen, C. E. and Williams, C. K. (2006). Gaus-

sian processes for machine learning, volume 1. MIT press Cambridge.

[Reed et al., 2017] Reed, S., van den Oord, A., Kalchbrenner, N., Colmenarejo, S. G.,

Wang, Z., Chen, Y., Belov, D., and de Freitas, N. (2017). Parallel multiscale autore-

gressive density estimation. In The International Conference on Machine Learning

(ICML), volume 70 of Proceedings of Machine Learning Research, pages 2912–2921.

PMLR.

[Rezende and Mohamed, 2015] Rezende, D. J. and Mohamed, S. (2015). Variational

inference with normalizing flows. The International Conference on Machine Learning

(ICML).

[Rezende et al., 2014] Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochas-

tic backpropagation and approximate inference in deep generative models. The In-

ternational Conference on Machine Learning (ICML).

177

[Richardson et al., 2016] Richardson, E., Sela, M., and Kimmel, R. (2016). 3d face

reconstruction by learning from synthetic data. In Fourth International Conference

on 3D Vision (3DV), pages 460–469.

[Rissanen, 1978] Rissanen, J. (1978). Modeling by shortest data description. Automat-

ica, 14(5):465 – 471.

[Salimans et al., 2016] Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Rad-

ford, A., Chen, X., and Chen, X. (2016). Improved techniques for training GANs.

In Advances in Neural Information Processing Systems (NIPS), pages 2234–2242.

Curran Associates, Inc.

[Salimans et al., 2017] Salimans, T., Karpathy, A., Chen, X., and Kingma, D. (2017).

Improving the PixelCNN with discretized logistic mixture likelihood and other mod-

ifications. The International Conference on Learning Representations (ICLR).

[Sanchez and Valstar, 2018] Sanchez, E. and Valstar, M. (2018). Triple consistency

loss for pairing distributions in gan-based face synthesis. arXiv preprint1811.03492.

[Sánchez Pérez et al., 2013] Sánchez Pérez, J., Meinhardt-Llopis, E., and Facciolo, G.

(2013). TV-L1 Optical Flow Estimation. Image Processing On Line, 3:137–150.

[Schroff et al., 2015] Schroff, F., Kalenichenko, D., and Philbin, J. (2015). FaceNet: A

unified embedding for face recognition and clustering. In The IEEE Conference on

Computer Vision and Pattern Recognition (CVPR).

[Schwarz, 1978] Schwarz, G. (1978). Estimating the dimension of a model. The Annals

of Statistics, 6(2):461–464.

[Shen and Liu, 2017] Shen, W. and Liu, R. (2017). Learning residual images for face

attribute manipulation. In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).

[Shih et al., 2014] Shih, Y., Paris, S., Barnes, C., Freeman, W. T., and Durand, F.

(2014). Style transfer for headshot portraits. ACM Transactions on Graphics (TOG),

33(4):148:1–148:14.

[Shu et al., 2018] Shu, Z., Sahasrabudhe, M., Alp Guler, R., Samaras, D., Paragios,

N., and Kokkinos, I. (2018). Deforming autoencoders: Unsupervised disentangling

of shape and appearance. In The European Conference on Computer Vision (ECCV).

178

[Shu et al., 2016] Shu, Z., Shechtman, E., Samaras, D., and Hadap, S. (2016). Eye-

Opener: Editing eyes in the wild. ACM Transactions on Graphics (TOG), 36(1):1:1–

1:13.

[Shu et al., 2017] Shu, Z., Yumer, E., Hadap, S., Sunkavalli, K., Shechtman, E., and

Samaras, D. (2017). Neural face editing with intrinsic image disentangling. In The

IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[Smith, 2013] Smith, C. (2013). Facebook users are uploading 350 million new photos

each day. https://www.businessinsider.com/facebook-350-million-photos-each-day-

2013-9?IR=T.

[Smith and Hocking, 1972] Smith, W. B. and Hocking, R. R. (1972). Algorithm AS

53: Wishart variate generator. Journal of the Royal Statistical Society. Series C

(Applied Statistics), 21(3):341–345.

[Smolensky, 1986] Smolensky, P. (1986). Information processing in dynamical systems:

Foundations of harmony theory. In Parallel Distributed Processing: Explorations in

the Microstructure of Cognition, volume 1, chapter 6, pages 194–281. MIT Press,

Cambridge.

[Srivastava et al., 2017] Srivastava, A., Valkov, L., Russell, C., Gutmann, M. U., and

Sutton, C. (2017). VEEGAN: Reducing mode collapse in GANs using implicit vari-

ational learning. In Advances in Neural Information Processing Systems (NIPS),

pages 3308–3318. Curran Associates, Inc.

[Tewari et al., 2017] Tewari, A., Zollhofer, M., Kim, H., Garrido, P., Bernard, F.,

Perez, P., and Theobalt, C. (2017). MoFA: Model-based deep convolutional face

autoencoder for unsupervised monocular reconstruction. In The IEEE International

Conference on Computer Vision (ICCV).

[Theis et al., 2016] Theis, L., van den Oord, A., and Bethge, M. (2016). A note on the

evaluation of generative models. The International Conference on Learning Repre-

sentations (ICLR).

[Thies et al., 2016] Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., and Niess-

ner, M. (2016). Face2Face: Real-time face capture and reenactment of RGB videos.

In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[Tieleman and Hinton, 2012] Tieleman, T. and Hinton, G. (2012). Lecture 6.5-

RMSprop: Divide the gradient by a running average of its recent magnitude.

COURSERA: Neural networks for machine learning, 4(2):26–31.

179

[Tipping and Bishop, 1999] Tipping, M. E. and Bishop, C. M. (1999). Probabilistic

principal component analysis. Journal of the Royal Statistical Society. Series B

(Statistical Methodology), 61(3):611–622.

[Tomczak and Welling, 2018] Tomczak, J. and Welling, M. (2018). VAE with a Vamp-

Prior. In Proceedings of the Twenty-First International Conference on Artificial

Intelligence and Statistics, volume 84 of Proceedings of Machine Learning Research,

pages 1214–1223. PMLR.

[Tschannen et al., 2018] Tschannen, M., Bachem, O. F., and Lui, M. (2018). Recent

advances in autoencoder-based representation learning. In Bayesian Deep Learning

Workshop, NeurIPS.

[Tuan Tran et al., 2017] Tuan Tran, A., Hassner, T., Masi, I., and Medioni, G. (2017).

Regressing robust and discriminative 3D morphable models with a very deep neural

network. In The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

[Turk and Pentland, 1991] Turk, M. A. and Pentland, A. P. (1991). Face recognition

using eigenfaces. In The IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 586–591. IEEE.

[Upchurch et al., 2017] Upchurch, P., Gardner, J., Pleiss, G., Pless, R., Snavely, N.,

Bala, K., and Weinberger, K. (2017). Deep Feature Interpolation for image content

changes. In The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

[Vincent et al., 2008] Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A.

(2008). Extracting and composing robust features with denoising autoencoders. In

The International Conference on Machine Learning (ICML), pages 1096–1103. ACM.

[Wah et al., 2011] Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie, S.

(2011). The Caltech-UCSD Birds-200-2011 Dataset. Technical report.

[Walker et al., 2016] Walker, J., Doersch, C., Gupta, A., and Hebert, M. (2016). An

uncertain future: Forecasting from variational autoencoders. In The European Con-

ference on Computer Vision (ECCV).

[Wallace, 1992] Wallace, G. K. (1992). The JPEG still picture compression standard.

IEEE Transactions on Consumer Electronics, 38(1):xviii–xxxiv.

180

[Wang et al., 2004] Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004).

Image quality assessment: from error visibility to structural similarity. IEEE Trans-

actions on Image Processing, 13(4):600–612.

[Wolberg, 1998] Wolberg, G. (1998). Image morphing: a survey. The visual computer,

14(8-9):360–372.

[Woolrich et al., 2001] Woolrich, M. W., Ripley, B. D., Brady, M., and Smith, S. M.

(2001). Temporal autocorrelation in univariate linear modeling of FMRI data. Neu-

roImage, 14(6):1370 – 1386.

[Wu et al., 2019] Wu, A., Nowozin, S., Meeds, E., Turner, R. E., Hernandez-Lobato,

J. M., and Gaunt, A. L. (2019). Deterministic variational inference for robust

bayesian neural networks. The International Conference on Learning Representa-

tions (ICLR).

[Xu et al., 2019] Xu, H., Chen, W., Lai, J., Li, Z., Zhao, Y., and Pei, D. (2019). On the

necessity and effectiveness of learning the prior of variational auto-encoder. arXiv

preprint:1905.13452.

[Yan et al., 2016] Yan, X., Yang, J., Sohn, K., and Lee, H. (2016). Attribute2Image:

Conditional image generation from visual attributes. The European Conference on

Computer Vision (ECCV).

[Yang et al., 2017] Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O., and Li, H.

(2017). High-resolution image inpainting using multi-scale neural patch synthesis.

In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[Yang et al., 2011] Yang, F., Wang, J., Shechtman, E., Bourdev, L., and Metaxas, D.

(2011). Expression flow for 3D-aware face component transfer. ACM Transactions

on Graphics (TOG), 30(4):60:1–60:10.

[Yeh et al., 2016] Yeh, R. A., Liu, Z., Goldman, D. B., and Agarwala, A. (2016). Se-

mantic facial expression editing using autoencoded flow. arXiv preprint:1611.09961.

[Yu and Koltun, 2015] Yu, F. and Koltun, V. (2015). Multi-scale context aggregation

by dilated convolutions. The International Conference on Learning Representations

(ICLR).

[Yu et al., 2015] Yu, F., Zhang, Y., Song, S., Seff, A., and Xiao, J. (2015). Lsun:

Construction of a large-scale image dataset using deep learning with humans in the

loop. arXiv preprint:1506.03365.

181

[Zach et al., 2007] Zach, C., Pock, T., and Bischof, H. (2007). A duality based approach

for realtime TV-L1 optical flow. In Pattern Recognition, pages 214–223, Berlin,

Heidelberg. Springer Berlin Heidelberg.

[Zakharov et al., 2019] Zakharov, E., Shysheya, A., Burkov, E., and Lempitsky, V.

(2019). Few-shot adversarial learning of realistic neural talking head models. In The

IEEE International Conference on Computer Vision (ICCV).

[Zhang et al., 2018] Zhang, H., Goodfellow, I., Metaxas, D., and Odena, A. (2018).

Self-attention generative adversarial networks. arXiv preprint:1805.08318.

[Zhao et al., 2017a] Zhao, J., Mathieu, M., and LeCun, Y. (2017a). Energy-based

generative adversarial network. The International Conference on Learning Repre-

sentations (ICLR).

[Zhao et al., 2017b] Zhao, S., Song, J., and Ermon, S. (2017b). Infovae: Information

maximizing variational autoencoders. arXiv preprint:1706.02262.

[Zhou et al., 2016] Zhou, T., Tulsiani, S., Sun, W., Malik, J., and Efros, A. A. (2016).

View synthesis by appearance flow. In The European Conference on Computer Vision

(ECCV), pages 286–301.

[Zhu et al., 2016] Zhu, J.-Y., Krähenbühl, P., Shechtman, E., and Efros, A. A. (2016).

Generative visual manipulation on the natural image manifold. In The European

Conference on Computer Vision (ECCV), pages 597–613, Cham. Springer Interna-

tional Publishing.

[Zhu et al., 2017] Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017). Unpaired

image-to-image translation using cycle-consistent adversarial networks. In The IEEE

International Conference on Computer Vision (ICCV).

[Zollhöfer et al., 2018] Zollhöfer, M., Thies, J., Garrido, P., Bradley, D., Beeler, T.,

Pérez, P., Stamminger, M., Nießner, M., and Theobalt, C. (2018). State of the art

on monocular 3D face reconstruction, tracking, and applications. Computer Graphics

Forum, 37(2):523–550.

182

Appendix A

Structured uncertainty

A.1 Proofs and derivations

A.1.1 Gaussian Markov Random Fields

Equivalence to multivariate Gaussian likelihood

First we state in more detail the log probability in a G-CRF model, which is usually

defined in terms of pair-wise and unary potential functions:

log pθ(x|z) ∝
n−1
∑

i=0

∑

j∈Ni

ψij(xi, xj , z) +
n−1
∑

j=0

ψj(xj , z), (A.1)

ψij(xi, xj , z) = −1

2
xi (λ(z)i,j)xj , s.t. λ(z)i,j = λ(z)j,i (A.2)

ψj(xj , z) = −1

2
(λ(z)j,j)x

2
j + (η(z)j)xj , (A.3)

where xi and xj denote individual pixels, λi,j(z) and ηj(z) are functions parametrised

by θ, Ni is the set of all neighbours of pixel xi, z is the conditioning input vector, and

ψij(·) and ψj(·) are known as potential functions. The parametric functions, λi,j(z)

and ηj(z), can be implemented as neural networks, where the model optimises their

parameters θ. The ηj , λi,j and λj,j terms can be accumulated in matrix form as

log pθ(x|z) ∝ (η(z))
T

x− 1

2
x

T

(Λ(z))x, (A.4)

which is the log probability described in equation 3.20.

183

To see how the log likelihood of a Gaussian MRF, equation A.4, is proportional to that

of a Multivariate Gaussian distribution, equation 3.6, we first need to define the log

probability of a Multivariate Gaussian distribution in canonical form [Murphy, 2012].

The log probability with respect to the canonical parameters η , Λµ and Λ , Σ−1 is

defined as

logN c(x|η,Λ) = c+
1

2

(

log (|Λ|)− x
T

Λx− ηT

Λ−1η + 2x
T

η
)

, (A.5)

where c = −n
2 log (2π) is a constant term, and the c in N c(·) is used to distinguish this

parametrisation from the standard one with µ and Σ.

The log probability of the Gaussian MRF in equation A.4, can be rewritten as

log p(x)θ ∝ ηT

x− 1

2
x

T

Λx =
1

2

(

−x
T

Λx+ 2x
T

η
)

, (A.6)

where we dropped the dependency of z for clarity of notation. It can be seen that all

the data terms, i.e. those involving x, in the logN c(x|η,Λ), defined above appear in

the log probability of the Gaussian MRF. Therefore, the Gaussian MRF is equivalent

to a multivariate Gaussian, up to a normalisation factor.

Conditional independence proof

The conditional independence property in Gaussian CRF is known [Murphy, 2012]

and we reproduce it here for completeness. The conditional independence assertion

in equation 3.22 is stated with respected to sets xA and xB. For simplicity, in this

proof we assume sets of size one, xj and xk, as the generalisation to larger size sets is

straightforward. In other words, we have three pixels, where xj is the pixel connected

to xi with λi,j 6= 0, and xk is the pixel that is not connected to xi with λi,k = 0. We

also redefine the potential functions in the exponential space, ψ̃ij = eψij , and ψ̃j = eψj ,

as this will simplify the notation for the proof.

We start by using the functional conditional independence theorem [Murphy, 2012].

The theorem states that xi and xk are conditionally independent given xj , which can

be written as

p(xi, xj , xk) = p(xi|xj)p(xj , xk), (A.7)

184

if the joint probability can be expressed in terms of functions as

p(xi, xk|xj) = ψ̃ij(xi, xj)ψ̃jk(xj , xk) s.t. p(xj) > 0. (A.8)

This is the case for λi,k = 0, and it can be proved by noting that Markov Random

Fields are constrained to pairwise connections. Thus, we can write

p(xi, xk|xj) = p(xi|xj , xk)p(xk|xj), (A.9)

p(xi, xk|xj) ∝ ψ̃ik(xi, xk)ψ̃ij(xi, xj)ψ̃jk(xj , xk). (A.10)

Employing the definition for pairwise potentials in equation A.2 and given the afore-

mentioned assumption that λi,k = 0, we see that ψik(xi, xk) = 0, and equivalently,

ψ̃ik(xi, xk) = 1. Therefore, the term cancels out in the equation above, leading to

p(xi, xk|xj) ∝ ψ̃ij(xi, xj)ψ̃jk(xj , xk), (A.11)

which has the same form as equation A.8, thus concluding the proof.

A.1.2 Directly modelling the Cholesky decomposition of the covari-

ance matrix

If the covariance network only explicitly estimates the non-zero elements inM, sampling

from Σ is computed as a simple matrix-vector multiplication, ǫ = Mu. However, the

reconstruction error

r
T (

Σ−1
)

r = w
T

w, (A.12)

requires solving a system of equations on each training step as

M
T

w = r, (A.13)

where the system is solved for w. The log determinant is computed as

log(|Σ|) = 2
n−1
∑

i=0

log(mii), (A.14)

where mii is a diagonal element in M.

Due to the quadratic increase in the number of elements in Σ, this approach is only

tractable if a sparsity pattern similar to the one discussed in Section 3.3.3 is applied

in M. This assumes that deep learning frameworks that support sparse tensors and

185

sparse system of equations solvers. Withal, the main limitation in a sparse approach

applied onM is that long range correlations could no longer be modelled, as the sparsity

pattern in M is propagated to Σ by construction.

A.1.3 Example of operator s(·)

In this section we show how the s(·) operator modifies a dense matrix, where the

operator includes padding and shifting. The operator can be understood as working in

two stages. In the first, it generates an intermediate matrix by padding with zeros the

input matrix, such that the sparsity pattern in the first column of L is replicated in each

column of the output matrix of the first stage. In the second, it reorders the padded

matrix, which is indexed by i, j into an output matrix indexed by k,m as follows

k = i+ j and m = j, (A.15)

where any k,m index in the output that would require a negative i is set to zero. In

practice, the output matrix is constructed directly, without the intermediate matrix.

Below, we provide an example for a 4× 4 grey-scale image, with a neighbourhood size

of nf = 3 and nb = 4 is the number of vectors in the basis matrix. The input image is

defined as

f(x) =

x0,0 x0,1 x0,2 x0,3

x1,0 x1,1 x1,2 x1,3

x2,0 x2,1 x2,2 x2,3

x3,0 x3,1 x3,2 x3,3

.

The dense basis matrix is defined as

B =

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

b4,0 b4,1 b4,2 b4,3

.

The dense weight matrix is defined as

W =

w0,0 w0,1 w0,2 w0,3 w0,4 w0,5 w0,6 w0,7 w0,8 w0,9 w0,10 w0,11 w0,12 w0,13 w0,14 w0,15

w1,0 w1,1 w1,2 w1,3 w1,4 w1,5 w1,6 w1,7 w1,8 w1,9 w1,10 w1,11 w1,12 w1,13 w1,14 w1,15

w2,0 w2,1 w2,2 w2,3 w2,4 w2,5 w2,6 w2,7 w1,8 w2,9 w2,10 w2,11 w2,12 w2,13 w2,14 w2,15

w3,0 w3,1 w3,2 w3,3 w3,4 w3,5 w3,6 w3,7 w3,8 w3,9 w3,10 w3,11 w3,12 w3,13 w3,14 w3,15

.

186

The dense matrix T = BW, contains the non-zero values in L. Therefore, after the

matrix multiplication the values that would correspond to neighbours outside of the

image are zeroed out as

T =

t0,0 t0,1 t0,2 t0,3 t0,4 t0,5 t0,6 t0,7 t0,8 t0,9 t0,10 t0,11 t0,12 t0,13 t0,14 t0,15

t1,0 t1,1 t1,2 0 t1,4 t1,5 t1,6 0 t1,8 t1,9 t1,10 0 t1,12 t1,13 t1,14 0

0 t2,1 t2,2 t2,3 0 t2,5 t2,6 t2,7 0 t2,9 t2,10 t2,11 0 0 0 0

t3,0 t3,1 t3,2 t3,3 t3,4 t3,5 t3,6 t3,7 t3,8 t3,9 t3,10 t3,11 0 0 0 0

t4,0 t4,1 t4,2 0 t4,4 t4,5 t4,6 0 t4,8 t4,9 t4,10 0 0 0 0 0

.

In practice, for the square error evaluation this process is done by padding the images

with zeroes on the borders, as it is standard for 2D convolutions in deep learning

frameworks.

The sparse matrix L is constructed after applying the s(·) operator, as L = s(T),

L =

t0,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t1,0 t0,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 t1,1 t0,2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 t1,2 t0,3 0 0 0 0 0 0 0 0 0 0 0 0

t3,0 t2,1 0 0 t0,4 0 0 0 0 0 0 0 0 0 0 0

t4,0 t3,1 t2,2 0 t1,4 t0,5 0 0 0 0 0 0 0 0 0 0

0 t4,1 t3,2 t2,3 0 t1,5 t0,6 0 0 0 0 0 0 0 0 0

0 0 t4,2 t3,3 0 0 t1,6 t0,7 0 0 0 0 0 0 0 0

0 0 0 0 t3,4 t2,5 0 0 t0,8 0 0 0 0 0 0 0

0 0 0 0 t4,4 t3,5 t2,6 0 t1,8 t0,9 0 0 0 0 0 0

0 0 0 0 0 t4,5 t3,6 t2,7 0 t1,9 t0,10 0 0 0 0 0

0 0 0 0 0 0 t4,6 t3,7 0 0 t1,10 t0,11 0 0 0 0

0 0 0 0 0 0 0 0 t3,8 t2,9 0 0 t0,12 0 0 0

0 0 0 0 0 0 0 0 t4,8 t3,9 t2,10 0 t1,12 t0,13 0 0

0 0 0 0 0 0 0 0 0 t4,9 t3,10 t2,11 0 t1,13 t0,14 0

0 0 0 0 0 0 0 0 0 0 t4,10 t3,11 0 0 t1,14 t0,15

x0,0

x0,1

x0,2

x0,3

x1,0

x1,1

x1,2

x1,3

x2,0

x2,1

x2,2

x3,3

x3,0

x3,1

x3,2

x3,3

,

where on the right side of the matrix the vectorisation of the input image, f(x), into

x is shown.

A.1.4 Example of operator g(I)

In this section we show how the g(I) operator modifies a dense identity matrix, to

generate a kernel tensor that can be used in a 2D convolution. The operator transform

a nc × nc matrix into a nf × nf × nc tensor. For this example we assume that nf = 3

187

and B = I. Therefore, I has a shape of 5 × 5, and g(I) is a tensor of shape 3 × 3 × 5

and with values

g(I) =

0 0 0

0 1 0

0 0 0

,

0 0 0

0 0 1

0 0 0

,

0 0 0

0 0 0

1 0 0

,

0 0 0

0 0 0

0 1 0

,

0 0 0

0 0 0

0 0 1

. (A.16)

Note that when this kernel is convolved with an input image of shape nh × nw × 1, a

tensor of shape nh×nw× 5 is created. The image corresponding to the first channel in

the tensor is a copy of the input image, and the image in the second channel corresponds

to the input shifted one pixel to the left. Similarly, the third is shifted one pixel to the

right and one pixel to the top, the fourth is shifted one pixel to the top, and the fifth

is shifted one pixel to the left and one the top.

A.1.5 Sampling from a multivariate Gaussian distribution

In this section we show how to draw samples from a multivariate Gaussian distribution

x ∼ N
(

µ,Σ
)

, using the Cholesky matrix L. The covariance matrix, Σ, can be

expressed in terms of the Cholesky factors of the precision matrix,

Σ = MM
T

= Λ−1 = (LL
T

)−1 = (L
T

)−1L−1. (A.17)

Thus, we can substitute (L
T
)−1 for M in the sampling operation

x = µ+ ǫ (A.18)

= µ+Mu (A.19)

= µ+ (L
T

)−1u, (A.20)

where ǫ ∼ N
(

0,Σ
)

and u ∼ N
(

0, I
)

.

The second term in the right hand side can be rearranged as

(L
T

)−1u = ǫ (A.21)

L
T

ǫ = u (A.22)

which is the system that is solved for ǫ to sample from the covariance matrix.

Note that Mu 6= (L
T
)−1u, as M is lower triangular and (L

T
)−1 is upper triangular.

This means that although they lead to the same covariance matrix, samples drawn

188

for the same u will generate different x. In other words, both are valid Cholesky

decompositions of Σ, with one following the convention that the left matrix in the

decomposition should be lower triangular, and the other assuming it should be upper

triangular.

A.1.6 Equivalence between Cholesky-Wishart and Gamma-Gaussian

distributions

We start the proof by defining how to draw random samples from a Wishart distri-

bution. This is usually done via a Bartlett decomposition [Smith and Hocking, 1972]

as

Λ = CDD
T

C
T ∼W (Λ|V, p), (A.23)

where C is a Cholesky factor, V = CC
T
, of the scale matrix V, and D is a lower

triangular matrix. Each element in the diagonal of D is an independent sample from a

square root Gamma distribution, and the off-diagonal values are independently sampled

from a Gaussian as

p(di,i) = Ga
1
2

(

0.5

(

i(1− n)

n− 1
+ p

)

, 0.5

)

, (A.24)

p(di,j) = N
(

0, 1
)

, ∀i, j s.t. i 6= j and j < i, (A.25)

where i ∈ [0, 1, · · · , n − 1], and the square root Gamma distribution is defined in

Section A.1.7.

A sample from the Cholesky-Wishart distribution is similarly defined as

L = CD ∼W c(Λ|V, p). (A.26)

We consider only diagonal scale matrices,V, where the corresponding Cholesky factor is

C =
√
V, where

√
V denotes the element-wise application of the square root operation

to the matrix V. Substituting this matrix in the sampling equation of the Cholesky-

Wishart distribution leads to

L = CD =
√
VD. (A.27)

This equation can be simplified as

L = D, (A.28)

189

by absorbing the
√
V matrix in each distribution as

p(di,i) = Ga
1
2

(

0.5

(

i(1− n)

n− 1
+ p

)

,
0.5

vi,i

)

, (A.29)

p(di,j) = N
(

0, vi,i
)

, ∀i, j s.t. i 6= j and j < i. (A.30)

Proof of how scaling a random variable is equivalent to this parametrisation is provided

in Section A.1.8.

By inspection, the sample matrix L = D is Gamma-Gaussian distributed. Therefore,

if the samples from a Cholesky-Wishart distribution follow a Gamma-Gaussian distri-

bution, the probability density function of both must be equal too, thus concluding the

proof. Note that no samples are drawn when using the priors, they are only used for

this proof.

A.1.7 Derivation of square root Gamma distribution

We start with the standard definition of the probability of a Gamma distribution:

Ga
(

x|a, b
)

=
baxa−1e−bx

Γ(a)
, (A.31)

Γ(a) =

∫ ∞

0
ta−1e−tdt, (A.32)

where the distribution is parametrised by two scalars, where ai is the shape and bi is

known as the rate, and both parameters are required to be positive.

A change of variables q(y) = x = y2 and q−1(x) = y =
√
x is applied on the Gamma

distribution, which leads to the square root Gamma distribution, with a probability

density function defined by

Ga
1
2 (y|a, b) = Ga

(

q(y)|a, b
)

∣

∣

∣

∣

∂(q(y))

∂y

∣

∣

∣

∣

(A.33)

= Ga
(

y2|a, b
)

∣

∣

∣

∣

∂(y2)

∂y

∣

∣

∣

∣

(A.34)

=
ba(y2)a−1e−by

2

Γ(a)
|2y|, (A.35)

=
2bay2a−1e−by

2

Γ(a)
, (A.36)

190

The log probability, which is optimised, is defined by

logGa
1
2 (y|a, b) = (2a− 1) log(y)− by2 + a log(b)− log (Γ(a)) + log(2). (A.37)

A.1.8 Scaled Gaussian and square root Gamma variables

For both derivations a change of variables q(y) = αx = y and q−1(x) = x = 1
αy is

required. This change of variables has a log determinant of the Jacobian defined as

∣

∣

∣

∣

∂q(y)

∂x

∣

∣

∣

∣

=

∣

∣

∣

∣

∂αx

∂x

∣

∣

∣

∣

= |α| = α. (A.38)

For the normal distribution we want to prove that

N
(

y|αµ, α2σ2
)

= N
(

x|µ, σ2
)

s.t. y = αx. (A.39)

Intuitively, this means that if x is normally distributed, y = αx is also normally dis-

tributed, with the α folded into the hyper-parameters.

N
(

y|αµ, α2σ2
)

=

∣

∣

∣

∣

∂αx

∂x

∣

∣

∣

∣

N
(

αx|αµ, α2σ2
)

, (A.40)

= α
1√

2πα2σ2
e−

(αx−αµ)2

2α2σ2 , (A.41)

=
α

α
√
2πσ2

e−
α2(x−µ)2

2α2σ2 , (A.42)

=
❩α

❩α
√
2πσ2

e
−✚✚α2 (x−µ)2

✚✚α2 2σ2 , (A.43)

N
(

x|µ, σ2
)

=
1√
2πσ2

e−
(x−µ)2

2σ2 , (A.44)

where in the final line we recognize the probability density function of a Gaussian

distribution.

For the square root Gamma distribution we want to prove that

Ga
1
2

(

y|a, b
α2

)

= Ga
1
2 (x|a, b) s.t. y = αx. (A.45)

Intuitively, this means that if x is square root Gamma distributed, y = αx is also

square root Gamma distributed, with the α folded into the hyper-parameters.

191

Ga
1
2

(

y|a, b
α2

)

=

∣

∣

∣

∣

∂αx

∂x

∣

∣

∣

∣

Ga
1
2

(

αx|a, b
α2

)

(A.46)

= α
2
(

b
α2

)a
(αx)2a−1e−

b

α2 (αx)
2

Γ(a)
, (A.47)

=
α2α−2abaα2a−1x2a−1e−

α2

α2 bx
2

Γ(a)
, (A.48)

=
2α−2a+1baα2a−1x2a−1e−

α2

α2 bx
2

Γ(a)
, (A.49)

=

❳❳❳❳❳α−(2a−1) ❳❳❳α2a−1 2bax2a−1e
−✚✚α2

✚✚α2
bx2

Γ(a)
, (A.50)

Ga
1
2 (x|a, b) = 2bax2a−1e−bx

2

Γ(a)
, (A.51)

where in the final line we recognize the probability density function of a square root

Gamma distribution.

A.1.9 Cholesky-Wishart distribution

Derivation

This derivation is partly based on the matrix outer product bijector derivation of

Dillon et al . [Dillon et al., 2017]. The starting point will be the definition of the

Wishart density function in equation 3.36 and the change of variables transformation

in equation 3.41.

First, we prove the change of variables result in equation 3.42. We substitute Λ for

LL
T
in equation 3.36, which results in

W (LL
T |V, p) = 1

2pn/2|V|p/2Γn
(p
2

) |LLT |(p−n−1)/2e−(1/2)tr(V−1LL
T
), (A.52)

=
1

2pn/2|V|p/2Γn
(p
2

)(|L||LT |)(p−n−1)/2e−(1/2)tr(V−1LL
T
), (A.53)

=
1

2pn/2|V|p/2Γn
(p
2

)(|L|2)(p−n−1)/2e−(1/2)tr(V−1LL
T
), (A.54)

=
1

2pn/2|V|p/2Γn
(p
2

) |L|(p−n−1)e−(1/2)tr(V−1LL
T
). (A.55)

192

Next we turn our attention to the determinant of the Jacobian term in equation 3.41,

namely
∣

∣

∣

∣

∣

∂(LL
T
)

∂L

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∂Λ

∂L

∣

∣

∣

∣

, (A.56)

where we will prove that
∣

∣

∣

∣

∂Λ

∂L

∣

∣

∣

∣

= 2n
n−1
∏

j=0

ℓn−jj,j . (A.57)

The derivative of a single element in L indexed by a, b, with respect to a single element

in Λ indexed by i, j can be written as

∂λi, j

∂ℓa,b
=
∂(ℓi,:ℓ

T

:,j)

∂ℓa,b
, (A.58)

=

n−1
∑

d=0

(1i=a1d=bℓj,d + 1j=a1d=bℓi,d), (A.59)

where : is used to denote selecting all the elements along the given dimension, and 1i=j

is a scalar indicator variable with a value of 1 if i is equal to j and 0 otherwise.

In order to build the Jacobian matrix, both L and Λ must be vectorised, otherwise

we would have a multidimensional Jacobian hyper-matrix for which computing the

hyper-determinant is a complex task. A row-major mapping operation which drops all

upper-triangular elements is used, which will be denoted as vec[·], where the indices

are defined as

k = i(i+ 1)/2 + j i >= j (A.60)

drop i < j, (A.61)

where i and j index rows and columns in the input matrix, k is the index in the output

vector, and drop is used to denote elements that are dropped. For example a 4 × 4

matrix would be vectorised as

0 . . .

1 2 . .

3 4 5 .

6 7 8 9

→
[

0 1 2 3 4 5 6 7 8 9
]

. (A.62)

The dropped elements in L are zero by construction and so is their gradient. As Λ is

symmetric, the dropped elements correspond to the repeated values in the matrix.

193

Observe that k(i, j) < k(a, b) iff (1) i < a or (2) i = a and j < b. In both cases

∂vec[λi,j]

∂vec[ℓa,b]
= 0 (A.63)

since:

j ≤ i < a thus i, j 6= a, (A.64)

i = a > j thus i, j 6= a. (A.65)

As a result, the Jacobian matrix is lower-triangular, which simplifies the determinant

to be the product of its diagonal elements. As we are only interested in the diagonal

elements in the Jacobian, equation A.59 for these elements simplifies to

∂vec[λi,j]

∂vec[ℓi,j]
= ℓj,j + 1i=jℓi,j . (A.66)

From the previous definition, observe that for a new row (i + 1, :) in L, the first j

gradient terms are {ℓ0,0, ℓ1,1, · · · , ℓj,j}, and the diagonal term is

∂vec[λj+1,j+1]

∂vec[ℓj+1,j+1]
= 2ℓj+1, j+1. (A.67)

Therefore, we complete the proof by aggregating all the terms

∣

∣

∣

∣

∂Λ

∂L

∣

∣

∣

∣

=

∣

∣

∣

∣

∂vec[Λ]

∂vec[L]

∣

∣

∣

∣

= 2n
n−1
∏

j=0

ℓn−jj,j . (A.68)

Efficient likelihood evaluation

In this section we show how to evaluate equations 3.42 and 3.43, in terms of the

dense representation T = BW. As it is common practice in machine learning, the

log probability is optimised instead of directly maximising the distribution probability

density function:

logW c(L|V, p) =− p

2
log (|V|)− log

(

Γn

(p

2

))

+ (p− n− 1) log(|L|)−

1

2
tr
(

V−1LL
T
)

− n(2− p)

2
log(2) +

n−1
∑

i=0

(n− i) log(ℓi,i)
(A.69)

194

All the terms that do not involve L are ignored, as they are constants that can be

precomputed.

The log determinant and the log determinant of the Jacobian can be computed as

(p− n− 1) log(|L|) = (p− n− 1)
n−1
∑

j=0

log(t0,j), (A.70)

n−1
∑

i=0

(n− i) log(ℓi,i) =
n−1
∑

j=0

(n− j) log(t0,j). (A.71)

The trace term is more problematic. Luckily, for a diagonal scale matrix, V, it simplifies

to

tr
(

V−1LL
T
)

= tr
(

V−1Λ
)

=
n−1
∑

i=0

λi,i
vi,i

. (A.72)

Thus, it can be efficiently computed as well, as the ith element in the diagonal of Λ is

the sum of the squared values over a single row:

λi,i =
n−1
∑

j=0

ℓ2i,j . (A.73)

From our dense representation, f(T), a convolution operator can be used to sum up

the corresponding values as

λi,i = (f−1(f(T2) ∗ o))i,i, (A.74)

where T2 applies an element-wise square operator and f(·) is the reshape operator

defined in Section 3.3.4. Note that directly summing over the rows of T2 is not pos-

sible due to the previously defined operator s(·), which shifts and pads with zeros the

elements in T. The filters for the convolution, which sum over the shifted values have

nc = (n2f −1)/2+1 channels, and all the elements in each channel are zeros except at a

single location. For example, for a 3× 3 sparsity pattern on L, the kernel, o, is defined

as

o = g(I) =

0 0 0

0 1 0

0 0 0

k = 0

0 0 0

0 0 1

0 0 0

k = 1

0 0 0

0 0 0

1 0 0

k = 2

0 0 0

0 0 0

0 1 0

k = 3

0 0 0

0 0 0

0 0 1

k = 4

, (A.75)

195

where k indicates the channel dimension in the kernel, and g(·) is the reshape and zero

pad operator defined in Section 3.3.4.

A.1.10 Mode of the sparse Cholesky-Wishart distribution

In this section we will prove that the mode of a sparse Cholesky-Wishart distribution,

W c
sp(L |V, p), whose probability density function was defined in equation 3.50, is a

diagonal matrix, Λmode, defined as

λ̂i,i = vi,i

(

i(1− n)

n− 1
+ p− 1

)

, (A.76)

λ̂i,j = 0, ∀i, j s.t. i 6= j and j < i, (A.77)

where λ̂i,i are the diagonal elements in Λmode, λ̂i,j are the off-diagonal ones and

L ∈ R
n×n.

Mode of the square root Gamma distribution

We start the proof by finding the the mode of a square root Gamma distribution. We

need to take the derivative of the probability density function with respect to x and

equate to zero.

∂Ga
1
2 (x|a, b)
∂x

=
2b

Γ(a)
(2a− 1)x2a−2e−bx

2 − 2b

Γ(a)
x2a−12bxe−bx

2
, (A.78)

⇒
�
�
�2b

Γ(a)
(2a− 1)x2a−2e−bx

2 −
�
�
�2b

Γ(a)
x2a−12bxe−bx

2
= 0, (A.79)

⇒ (2a− 1)x2a−2e−bx
2 − x2a2be−bx

2
= 0, (A.80)

⇒ e−bx
2
((2a− 1)x2a−2 − 2bx2a) = 0, (A.81)

⇒ e−bx
2
x2a−2(2a− 1− 2bx2) = 0, (A.82)

where the cancellation of the Γ(·) terms is possible as b > 0 and a > 0, so 2b
Γ(a) > 0.

196

Now we find the roots independently. The first root is

e−bx
2
= 0, (A.83)

−bx2 = log(0), (A.84)

−bx2 = −∞, (A.85)

x = ±∞ (A.86)

which is not a valid solution.

The second root is

x2a−2 = 0, (A.87)

x = 0, (A.88)

which is also not a valid solution as x > 0.

The third root is

2a− 1− 2bx2 = 0, (A.89)

x =

√

2a− 1

2b
, (A.90)

=

√

1

2

√

2a− 1

b
, (A.91)

=

√
2√
2

1√
2

√

2a− 1

b
, (A.92)

=

√
2

2

√

2a− 1

b
, (A.93)

where x is the mode of the distribution.

Mode in terms of L, Λ and Σ

Employing the mode derived from the square root Gamma distribution (eq. A.93), we

now plug-in the hyper-parameters from the Cholesky-Wishart distribution (eq. 3.48),

to find the Cholesky matrix, Lmode, that corresponds to the mode of the distribution.

197

Formally, this is defined as

ℓ̂i,i =

√
2

2

√

√

√

√

2(0.5(i(1−n)n−1 + p))− 1
0.5
vi,i

, (A.94)

=

√
2

2

√

√

√

√

✁2(✟✟0.5(
i(1−n)
n−1 + p))− 1

0.5
vi,i

, (A.95)

=

√
2

2

√

vi,i(
i(1−n)
n−1 + p− 1)

0.5
, (A.96)

=

√
2

2

√
2

√

vi,i

(

i(1− n)

n− 1
+ p− 1

)

, (A.97)

=

√

vi,i

(

i(1− n)

n− 1
+ p− 1

)

, (A.98)

where ℓ̂i,i is used to denote the diagonal elements in Lmode.

The off-diagonal elements follow a Gaussian distribution, where it is known that the

mode of the distribution is equal to the mean hyper-parameter, which is zero in our

case. Therefore, Lmode is a diagonal matrix.

Rather than the Cholesky of the precision matrix, we are interested in the covariance

matrix, which is more interpretable. Hence, we derive the covariance matrix that

corresponds to the mode of the distribution. As the mode of the distribution is a

diagonal matrix, Lmode, the precision matrix Λmode = LmodeL
T

mode is also diagonal,

and we can simply square the result above

λ̂i,i =vi,i

(

i(1− n)

n− 1
+ p− 1

)

, (A.99)

where λ̂i,i denotes a diagonal element in Λmode.

Similarly, the covariance matrix, Σmode = Λ−1
mode, is diagonal as well. Thus, an inverse

per element is enough to invert the matrix

σ̂2i,i =
1

λ̂i,i
=

1

vi,i

(

i(1−n)
n−1 + p− 1

) , (A.100)

=
n− 1

vi,i(i(1− n) + (n− 1)(p− 1))
, (A.101)

where σ̂2i,i denotes a diagonal element in Σmode.

198

A.2 Network architectures

A.2.1 IPE models

The exp block in all the architectures removes the log in the diagonal values of the

Cholesky matrix that is being estimated. However, as previously explained the log

values are directly used for the log likelihood and prior evaluations.

Figure A-1: L-Decoder network archi-
tecture for the splines dataset.

Figure A-2: L-Decoder network architec-
ture for the ellipses dataset.

199

Figure A-3: VAE architecture for the grey-scale CelebA dataset.

200

Figure A-4: L-Decoder network architecture for the grey-scale CelebA dataset.

201

A.2.2 SDR models

Figure A-5: Common network architecture for all the models.

202

Figure A-6: Covariance prediction
branch for the Y channel in our
model.

Figure A-7: Diagonal co-
variance prediction branch
for the Y channel in a VAE.

Figure A-8: Spherical covariance pre-
diction branch for the Y channel in a
VAE, where mean pooling does a mean
across pixels, thus the output contains
a single value.

Figure A-9: Spherical covariance pre-
diction branch for the Cb and Cr chan-
nels in a VAE, where mean pooling
does a mean across pixels, thus the out-
put contains two values.

203

A.3 Additional qualitative results

A.3.1 Ablation studies

Näıve training and priors: Reconstructions

Input VAE (Σ) VAE (Σ-Ga
1
2N) VAE (Σ-W c

sp)

µ µ+ ǫ µ µ+ ǫ µ µ+ ǫ

Figure A-10: Comparison of image reconstructions for the different models. A model
without regularisation, VAE (Σ), encodes much of the information in the input image

in the structured residual. Employing regularisation with priors, VAE (Σ-Ga
1
2N) and

VAE (Σ-W c
sp), leads to unstructured noise and poor means.

204

Näıve training and priors: Samples

VAE (Σ) VAE (Σ-Ga
1
2N) VAE (Σ-W c

sp)

µ µ+ ǫ µ µ+ ǫ µ µ+ ǫ

Figure A-11: Comparison of samples generated by the different models. Not employing
regularisation, VAE (Σ), leads to modelling the image distribution in the structured

residual. Employing regularisation with priors, VAE (Σ-Ga
1
2N) and VAE (Σ-W c

sp),
leads to unstructured noise and poor means.

205

A.3.2 Comparison to previous work

CelebA: Reconstructions

Input VAE (Sph) VAE (Diag) β-VAE (Diag) VAE (SDR)

µ µ+ ǫ µ µ+ ǫ µ µ+ ǫ µ µ+ ǫ

Figure A-12: Comparison of image reconstructions for the different models. In contrast
to previous work, our model is able to learn structured residuals. This structured
residuals add plausible high-frequency content to the means, µ, such as hair details in
the first row, or tooth details in the second row.

206

CelebA: Samples

VAE (Sph) VAE (Diag) β-VAE (Diag) VAE (SDR)

µ µ+ ǫ µ µ+ ǫ µ µ+ ǫ µ µ+ ǫ

Figure A-13: Samples for all models, where our method is the only able to include
high-frequency details such as wrinkles. Neither the means, µ, nor the residuals, ǫ,
generated by VAE (Sph) and VAE (Diag) are realistic.

207

LSUN: Reconstructions

Input VAE (Sph) VAE (Diag) β-VAE (Diag) VAE (SDR)

µ µ+ ǫ µ µ+ ǫ µ µ+ ǫ µ µ+ ǫ

Figure A-14: Comparison of image reconstructions for the different models. Our model
is able to improve over the noisy images generated by previous work. However, the
increased complexity of this dataset has a detrimental effect on the quality of the
images generated by all the models..

208

LSUN: Samples

VAE (Sph) VAE (Diag) β-VAE (Diag) VAE (SDR)

µ µ+ ǫ µ µ+ ǫ µ µ+ ǫ µ µ+ ǫ

Figure A-15: Samples drawn from the models. VAE (Diag) fails to learn a useful latent
space and β-VAE produces blurrier images than our model. The images produced by
our approach contain structured high-frequency content, still, all the models are unable
to generate realistic images.

209

Model insights: multiple residual samples

Input µ

Input µ

Input µ

Figure A-16: Variability of the residual images for reconstructions using the VAE (SDR)
model. In the first row, each column shows a residual sample from the same covari-
ance matrix, and those are added to the mean, µ, in the second row. Variations of
hair position or teeth shape can be observed. Additional results can be found in the
supplemental video.

210

Model insights: interpolations

Source Target

Figure A-17: Samples drawn with our model while interpolating on the latent space,
from the source to target. The i value on each column corresponds to equation 3.54.
For every pair of rows, the first contains the sample from the model, µ + ǫ, and the
second contains the mean, µ.

211

Model insights: variance maps

VAE (Diag) VAE (SDR)

Input µ µ+ ǫ diag(Σ) µ µ+ ǫ diag(Σ)

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

0.00

0.05

0.10

Figure A-18: Variance maps for the Y channel in a VAE with diagonal covariance
Gaussian likelihood and in a VAE employing the SDR approach for a dense covariance
matrix. The diagonal noise estimation model mistakenly identifies structured areas as
high variance regions, whereas our covariance model properly identifies them as regions
with high covariance, yet lower variance.

212

Restricted vs unrestricted features: reconstructions

Input AE AE (IPE) VAE (Diag) VAE (IPE)

µ µ+ ǫ µ µ+ ǫ µ+ ǫ

Figure A-19: Comparison of image reconstructions for the different models. The AE
and VAE both generate over-smoothed images in µ, and VAE (Diag) generates unre-
alistic unstructured noise in µ + ǫ. For both the AE and VAE, our IPE model adds
plausible high-frequencies from a single sample drawn from the predicted uncertainty
distribution.

213

A.3.3 Application: denoising

Original Input DAE Ours VAE-Recons Noisy residual Proj. residual
x µ+ f(s) µ s = x− µ f(s)

Figure A-20: Denoising experiment, left column: original image without noise, second
column: image with added noise, third column: denoising autoencoder (DAE) result,
fourth column: our result, fifth column: VAE reconstruction from the noisy input, sixth
column: residual between the VAE reconstruction and the noisy input, right column:
the noisy residual projected on Σ̂, the matrix constructed with 1000 eigenvectors of
Σ. Our result is the sum of the projected residual and the VAE reconstruction. Our
model is able to recover fine details that are lost with the DAE approach.

214

Appendix B

WarpGAN

B.1 Network architectures

Our network architectures are based on the StarGAN model. In the generator all

transpose convolutions are replaced with bilinear resizing followed by convolution, and

instance normalisation is replaced by batch normalisation. For the discriminator the

StarGAN architecture is used without any modifications. In both tables the following

notation is used: N is the number of output channels, K is the kernel size, S is the

stride size, P is the padding size, BN is a batch normalisation layer, r is the number of

attributes, h and w denote the dimensionality of the input image.

Part Input → Output Shape Layer information

Downsampling

(h,w, 3) → (h
2
, w

2
, 64) CONV-(N64, K4x4, S2, P1), Leaky ReLU

(h
2
, w

2
, 64) → (h

4
, w

4
, 128) CONV-(N128, K4x4, S2, P1), Leaky ReLU

(h
4
, w

4
, 128) → (h

8
, w

8
, 256) CONV-(N256, K4x4, S2, P1), Leaky ReLU

(h
8
, w

8
, 256) → (h

16
, w
16
, 512) CONV-(N512, K4x4, S2, P1), Leaky ReLU

(h
16
, w
16
, 512) → (h

32
, w
32
, 1024) CONV-(N1024, K4x4, S2, P1), Leaky ReLU

(h
32
, w
32
, 1024) → (h

64
, w
64
, 2048) CONV-(N2048, K4x4, S2, P1), Leaky ReLU

Output layer D (h
64
, w
64
, 2048) → (h

64
, w
64
, 1) CONV-(N1, K3x3, S1, P1)

Output layer C (h
64
, w
64
, 2048) → (1, 1, r) CONV-(N(r), K h

64
x w

64
, S1, P0)

Table B.1: Architecture for the discriminator and the classifier networks, D and C.
The kernel weights in the downsampling layers are shared by D and C.

215

Part Input → Output Shape Layer information

Downsampling

(h,w, 3 + r) → (h,w, 64) CONV-(N64, K7x7, S1, P3), ReLU, BN

(h,w, 64) → (h
2
, w

2
, 128) CONV-(N128, K4x4, S2, P1), ReLU, BN

(h
2
, w

2
, 128) → (h

4
, w

4
, 256) CONV-(N256, K4x4, S2, P1), ReLU, BN

Bottleneck

(h
4
, w

4
, 256) → (h

4
, w

4
, 256) Residual Block:

CONV-(N256, K3x3, S1, P1), ReLU, BN

(h
4
, w

4
, 256) → (h

4
, w

4
, 256) Residual Block

(h
4
, w

4
, 256) → (h

4
, w

4
, 256) Residual Block

(h
4
, w

4
, 256) → (h

4
, w

4
, 256) Residual Block

(h
4
, w

4
, 256) → (h

4
, w

4
, 256) Residual Block

(h
4
, w

4
, 256) → (h

4
, w

4
, 256) Residual Block

Upsampling

(h
4
, w

4
, 256) → (h

2
, w

2
, 256) Bilinear resize

(h
2
, w

2
, 256) → (h

2
, w

2
, 128) CONV-(N128, K4x4, S1, P1), ReLU, BN

(h
2
, w

2
, 128) → (h,w, 128) Bilinear resize

(h,w, 64) → (h,w, 64) CONV-(N64, K4x4, S1, P1), ReLU, BN

(h,w, 64) → (h,w, 2) CONV-(N2, K7x7, S1, P1)

Table B.2: Architecture for the warping network, W , the last layer is the displacement
field w. All residual blocks have the same structure, as indicated by the first block.

216

B.2 Extended quantitative results

Accuracy vs identity preservation

Model Smiling Big

nose

Arched

eyebrows

Narrow

eyes

Pointy

nose

Mean

StarGAN 0.65 0.60 0.64 0.66 0.68 0.65

StarGAN+ 0.72 0.66 0.67 0.78 0.69 0.70

WarpGAN+ 0.83 0.73 0.81 0.87 0.82 0.81

Real 1.00 1.00 1.00 1.00 1.00 1.00

Table B.3: Quantitative comparison of the identity score on real and generated images
on the CelebA dataset evaluated with the face re-identification network, higher is better.
These results correspond to the models highlighted in purple in Fig. 4-14, where the
last column in this table contains the values for y-axis.

Model Smiling Big

nose

Arched

eyebrows

Narrow

eyes

Pointy

nose

Mean

StarGAN 0.84 0.60 0.69 0.65 0.62 0.68

StarGAN+ 0.92 0.73 0.87 0.75 0.82 0.82

WarpGAN+ 0.72 0.72 0.83 0.74 0.74 0.75

Real 0.92 0.81 0.82 0.88 0.72 0.83

Table B.4: Quantitative comparison of the attribute classification accuracy on real
and generated images on the CelebA dataset evaluated with a separate classification
network, higher is better. These results correspond to the models highlighted in purple
in Fig. 4-14, where the last column in this table contains the values for x-axis.

217

Accuracy vs realism

Model Smiling Big

nose

Arched

eyebrows

Narrow

eyes

Pointy

nose

Mean

StarGAN 0.85 0.84 0.75 0.83 0.76 0.81

StarGAN+ 0.85 0.84 0.89 0.86 0.83 0.86

WarpGAN+ 0.63 0.92 0.83 0.89 0.88 0.84

Real 0.88 0.64 0.74 0.56 0.36 0.63

Table B.5: Quantitative comparison of the attribute classification accuracy on real and
generated images on the CelebA dataset evaluated with a user study, higher is better.
This table contains the x-axis values used in Fig. 4-15.

Model Smiling Big

nose

Arched

eyebrows

Narrow

eyes

Pointy

nose

Mean

StarGAN 0.40 0.52 0.62 0.41 0.74 0.52

StarGAN+ 0.37 0.40 0.59 0.38 0.60 0.46

WarpGAN+ 0.42 0.64 0.79 0.57 0.82 0.65

Real 0.97 0.89 0.98 0.96 0.94 0.95

Table B.6: Quantitative comparison of image realism both on real and generated images
on the CelebA dataset evaluated with a user study, higher is better. This table contains
the y-axis values used in Fig. 4-15.

218

B.3 Additional qualitative results

CelebA

Input
No

smile

Big

nose

Arched

eyebrows

Narrowed

eyes

No pointy

nose

0.59/0.99 0.36/1.00 0.79/0.98 0.69/1.00 0.76/1.00

S
ta
rG

A
N

0.76/1.00 0.76/0.99 0.79/0.99 0.81/0.87 0.84/1.00

S
ta
rG

A
N
+

0.83/0.97 0.77/1.00 0.89/0.99 0.90/1.00 0.87/1.00

W
a
rp

G
A
N
+

Input
No

smile

Big

nose

No arched

eyebrows

Narrowed

eyes

Not pointy

nose

0.76/1.00 0.62/1.00 0.84/0.92 0.86/0.35 0.75/0.01

S
ta
rG

A
N

0.87/0.98 0.69/1.00 0.73/1.00 0.87/0.04 0.73/0.93

S
ta
rG

A
N
+

0.80/0.00 0.78/1.00 0.86/1.00 0.91/0.46 0.83/0.97

W
a
rp

G
A
N
+

Figure B-1: Additional results on the CelebA dataset. From a given input image, first
column, each method attempts to transfer the semantic attribute in its corresponding
column. An identity score and attribute transfer score are shown as (id / cls) on top
of each image (higher is better for both).

219

RafD

Input Angry Contemptuous Disgusted Fearful Happy Sad Surprised Neutral

O
ri
g
in

a
l-
H
R

W
a
r
p
G

A
N

-
H

R
O
ri
g
in

a
l-
H
R

W
a
r
p
G

A
N

-
H

R
O
ri
g
in

a
l-
H
R

W
a
r
p
G

A
N

-
H

R
O
ri
g
in

a
l-
H
R

W
a
r
p
G

A
N

-
H

R

Figure B-2: Additional results on the RafD dataset for our model at the original dataset
resolution (580×540). The input image is shown in the first column, and each method
attempts to transfer the semantic attribute of the corresponding column. The dataset
contains paired examples for each attribute, which are shown as Original-HR for each
subject. (Zoom in for details)

220

Flickr-HR

Input Big nose Smiling

Input Big nose Arched Eyebrows

Figure B-3: Additional results of our model on high-resolution images. Our model
predicts warps at low resolution that can then be resized and applied to high resolution
images. The model is able to keep the content and identity at high resolution. Please
see supplemental videos demonstrating animated edits. (Zoom in for details)1

1Input images courtesy of Flickr users Kenneth DM and Randall Pugh.

221

Partial edits

Attribute α = −0.5 α = 0.0 α = 0.25 α = 0.50 α = 0.75 α = 1.00 α = 1.25

Smile

Not

Smile

Big

nose

Not big

nose

Arched

eyebrows

No arched

eyebrows

Narrowed

eyes

No narrowed

eyes

Pointy

nose

No pointy

nose

Figure B-4: Partial editing with our model, for the attribute indicated in the first col-
umn. A single warp is generated by our model, which is interpolated and extrapolated
by scaling the magnitude of its values by α. The input image, α= 0, is progressively
edited in both directions. A red box denotes the input image, and a green one the
output of the generator with α = 1. Please see supplemental videos demonstrating
animated edits.

222

Stretch maps

Input
No

smile

Big

nose

Arched

eyebrows

Narrow

eyes

Pointy

nose

W
a
rp
G
A
N

In
p
u
t

S
tr
et
ch

m
a
p

− 1.00

− 0.75

− 0.50

− 0.25

0.00

0.25

0.50

0.75

1.00

O
v
er
la
y

− 1.00

− 0.75

− 0.50

− 0.25

0.00

0.25

0.50

0.75

1.00

W
ar
p
G
A
N
+

In
p
u
t

S
tr
et
ch

m
a
p

− 1.00

− 0.75

− 0.50

− 0.25

0.00

0.25

0.50

0.75

1.00

O
v
er
la
y

− 1.00

− 0.75

− 0.50

− 0.25

0.00

0.25

0.50

0.75

1.00

Figure B-5: Stretch maps computed from the warp fields, for WarpGAN and Warp-
GAN+. The log determinant of the Jacobian of the warp is shown, where blue indicates
stretching and red corresponds to squashing. Using binary labels (WarpGAN) leads
to an accentuation of all attributes, while using signed labels (WarpGAN+) leads to
correctly localised edits for most attributes.

223

Cub200

Zoomed to the head

Input
Beak smaller
than head

Beak larger
than head

Input
Beak smaller
than head

Beak larger
than head

Figure B-6: Preliminary results from our model on test images from the Cub200
dataset [Wah et al., 2011]. The model attempts to transfer the attribute (relative
beak size) in each column to the input image. For easiness of comparison, a crop of
the head area is shown in the last three columns.

224

	Introduction
	Variational Autoencoders (VAE)
	Generative Adversarial Networks (GAN)
	Evaluation
	Publications
	Thesis outline

	Background
	Machine learning
	Deep learning
	Deep generative models
	Variational Autoencoders (VAE)
	Approximate posterior regularisation
	Complex approximate posterior
	Complex likelihood

	Generative Adversarial Networks (GAN)
	Stability
	Mode collapse
	Inference
	Evaluation

	Image-to-Image translation
	Face image editing

	Structured uncertainty
	Introduction
	Motivation
	Proposed solution

	Previous work
	Structured uncertainty prediction

	Methodology
	Covariance estimation considerations
	Precision matrix parametrisations
	Sparse Cholesky Decomposition
	Efficiency
	Priors
	Regularised precision matrix estimation

	Results
	Implementation details
	Synthetic datasets
	Ablation studies
	Comparison to previous work
	Model insights
	Application: denoising

	Discussion

	Warping GAN
	Introduction
	Motivation
	Proposed solution

	Previous work
	StarGAN
	Methods for high resolution

	Methodology
	Warp Parametrisations
	Learning
	Signed labels
	Inference

	Results
	Datasets
	Models
	Implementation details
	Quantitative metrics
	Ablation study
	Quantitative results
	Qualitative results

	Discussion

	Conclusions
	Summary of contributions
	Structured uncertainty prediction
	WarpGAN

	Limitations and future work
	Variational Autoencoders (VAE)
	Unpaired image-to-image translation models

	Final conclusions

	Appendix Structured uncertainty
	Proofs and derivations
	Gaussian Markov Random Fields
	Directly modelling the Cholesky decomposition of the covariance matrix
	Example of operator s()
	Example of operator g(I)
	Sampling from a multivariate Gaussian distribution
	Equivalence between Cholesky-Wishart and Gamma-Gaussian distributions
	Derivation of square root Gamma distribution
	Scaled Gaussian and square root Gamma variables
	Cholesky-Wishart distribution
	Mode of the sparse Cholesky-Wishart distribution

	Network architectures
	IPE models
	SDR models

	Additional qualitative results
	Ablation studies
	Comparison to previous work
	Application: denoising

	Appendix WarpGAN
	Network architectures
	Extended quantitative results
	Additional qualitative results

