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(a) Input image (previously unseen) (b) User requested edit: “beak larger than head” (c) User requested edit: “beak smaller than head”

Figure 1: Semantic image editing at high resolution (2480×1850). The user requests a change in a semantic attribute and the input image
(a) is automatically transformed by our method into, e.g., an image with “beak larger than head” (b) or “beak smaller than head” (c). The
content of the original input, including fine details, is preserved. Our focus is on face editing, as previous work, yet the method is general
enough to be applied to other datasets. Please see the supplemental material for videos of these and other edits. (Zoom in for details)1

Abstract
Deep neural networks have recently been used to edit im-

ages with great success, in particular for faces. However,
they are often limited to only being able to work at a re-
stricted range of resolutions. Many methods are so flexible
that face edits can often result in an unwanted loss of iden-
tity. This work proposes to learn how to perform semantic
image edits through the application of smooth warp fields.
Previous approaches that attempted to use warping for se-
mantic edits required paired data, i.e. example images of
the same subject with different semantic attributes. In con-
trast, we employ recent advances in Generative Adversarial
Networks that allow our model to be trained with unpaired
data. We demonstrate face editing at very high resolutions
(4k images) with a single forward pass of a deep network at
a lower resolution. We also show that our edits are substan-
tially better at preserving the subject’s identity. The robust-
ness of our approach is demonstrated by showing plausible
image editing results on the Cub200 [32] birds dataset. To
our knowledge this has not been previously accomplished,
due the challenging nature of the dataset.

1Image courtesy of Flickr user Christoph Landers.

1. Introduction
Face editing has a long history in computer vision [20,

23, 30] and has been made increasingly relevant with the
rise in the number of pictures people take of themselves or
others. The type of edits that are performed usually manip-
ulate a semantic attribute, such as removing a moustache or
changing the subject’s expression from a frown to a smile.

In the last few years, deep learning approaches have be-
come the standard in most editing tasks, including inpaint-
ing [24] and super-resolution [17]. Particularly, image-to-
image translation methods [14] have been proposed, which
learn how to transform an image from a source domain to a
target domain. Cycle-GAN [39] allows learning such trans-
lations from unpaired data, i.e. for each source image in the
dataset a corresponding target image is not required.

We are interested in photo-realistic image editing, which
is a subset of image-to-image translation. We also focus
on methods that provide a simple interface for users to edit
images, i.e. a single control per semantic attribute [5, 26],
as this makes editing easier for novice users.

A disadvantage of current methods for editing [14, 5, 35]
is that they focus on binary attribute changes. In order to al-
low partial edits an extensive collection of soft attribute data
is usually required, which is labor intensive. Also, at infer-
ence each intermediate value requires a forward pass of the



network, creating increased computational expense [26].
Most deep learning methods for image editing predict

the pixel values of the resulting image directly [5, 6, 25,
26]. As a consequence these methods are only effective on
images that have a similar resolution to the training data.

Recently, some interesting approaches that do allow ed-
its at higher resolutions have been proposed. They proceed
by estimating the edits at a fixed resolution and then ap-
plying them to images at a higher resolution. The types of
possible edits are restricted to either warping [35] or local
linear color transforms [10]. However, these approaches are
limited by requiring paired data, i.e. for each source image
in the dataset, they need the corresponding edited image.

Inspired by these high resolution methods, we intro-
duce an approach to learn smooth warp fields for seman-
tic image editing without the requirement of paired train-
ing data samples. This is achieved by exploiting the recent
advances in learning edits from unpaired data with cycle-
consistency checks, which derive from the Cycle-GAN [39]
method. Our proposed model uses a similar framework to
StarGAN [5] (an extension of Cycle-GAN) to predict warp
fields that transform the image to achieve the requested ed-
its. As the predicted warp fields are smooth, they can be
trivially upsampled and applied at high resolutions.

A potential criticism is that there are clear limitations to
the types of edits possible through warping. We argue that,
for the changes that can be described in this way, there are
several distinct benefits. The advantages of using warping
with respect to pixel based models can be summarized as:

i. Smooth warp fields can be upsampled and applied to
higher resolution images with a minimal loss of fi-
delity. This is opposed to upsampling images, which
commonly results in unrealistic high frequency details.
We show plausible edits using warp fields upscaled by
up to 30× the resolution they were estimated at.

ii. Geometric transformations are a subset of image trans-
formation models. These models make it easier to
add priors to regularize against unrealistic edits. We
demonstrate that editing by warping leads to a model
that is better at preserving a subject’s identity.

iii. Warp fields are more interpretable than pixelwise dif-
ferences. We illustrate this with maps showing the de-
gree of local stretching or squashing.

iv. Warp fields are much more suited to allow partial edits
than pixel based approaches. We demonstrate the sim-
plest implementation of this by scaling the warp field
to show interpolation and extrapolation, and qualita-
tively show edits that are plausible.

An additional contribution of this work is to improve the
specificity of editing attributes in StarGAN based models.
We have observed that when these models are trained with
several binary labels, they can transform more than one at-

Method Unpaired data High resolution Forward pass

StarGAN [5] X X

FaceShop [25] X X

WG-GAN [9] X

FlowVAE [35] X X

CWF [8] ∼ X

DBL [10] X X

iGAN [38] X ∼

DFI [31] X ∼

RelGAN [33] X X

SPM+R [34] X ∼ X

Ours X X X

Table 1: Compared to previous work on image-to-image transla-
tion, our model is the only one that is able to edit high-resolution
images in a single forward pass of the network, without paired
training data. Partial fulfillment of the criterion is denoted by ∼.

tribute of the image, even if only a single attribute should
be edited. This is caused by the model having no indica-
tion of the attributes that should be edited, only of the final
expected labels. For example, when enlarging the nose of
a subject that has a slight smile, the model will not only
make the nose bigger, but also make the smile more pro-
nounced. In order to overcome this limitation, we propose
to transform the labels to inform the model of which at-
tributes should be edited, and which should remain fixed.
This produces only the expected changes, and it does not
require any extra label annotation. Moreover, it removes
the need to rely on a label classifier during inference.

We demonstrate the advantages of our contributions by
providing quantitative and qualitative results by manipulat-
ing facial expressions and semantic attributes.

2. Previous work
This work builds upon recent work in image-to-image

translation. These models can be used to modify the seman-
tic attributes of an image. Our novelty is in describing these
edits as smooth deformation fields, rather than producing an
entirely new image. Smooth warp fields can be upsampled
and applied to higher resolution images with a minimal loss
of fidelity. Some previous works that allow high resolution
editing rely upon paired data examples or require costly op-
timization, rather than a single forward pass of a network;
neither of which is required for the proposed approach. An
overview of the characteristics of our work compared to pre-
vious methods is shown in Table 1.

2.1. Image-to-Image translation

The Pix2Pix [14] model learns to transform an image
from a source domain to a target domain using an adversar-
ial loss [11]. This approach requires paired training data;
i.e. each image in the source domain must have a corre-
sponding image in the target domain. Given this restriction,



the method is often applied to problems where collecting
paired data is easier, such as colorization.

Several extensions have been proposed to perform
image-to-image translation without requiring paired data.
In Cycle-GANs [39], two generators are trained, from the
source to the target domain and vice versa, with a cycle-
consistency loss on the generation process. However, this
does not scale well with an increase in the number of do-
mains, since 2 generators and 2 discriminators are needed
for each domain pair. StarGAN [5] addresses this issue by
conditioning the generator on a domain vector, and adding
a domain classification output layer to the discriminator.

These models can find undesired correlations within a
domain, which lead to changes in unexpected parts of the
image. At least two techniques have been explored in or-
der to encourage localized edits. Editing with residual im-
ages [28], and restricting the changes to a region given by
a mask [22, 26]. The first is an overcomplicated represen-
tation for edits describing shape changes. It has to model
the content in the region, subtract it, and add it in a second
region. The second complicates the model significantly by
adding an unsupervised mask prediction network.

Preceding this publication, two relevant extensions
to StarGAN have been proposed: RelGAN [33] and
SPM+R [34]. RelGAN proposes a binary label transfor-
mation approach similar to ours. However, their method is
trained using a conditional adversarial loss that takes triplets
composed of two images and a vector of changed attributes.
In contrast, our approach uses a simpler classification loss,
where only modified attributes count. RelGAN also enables
partial editing, however it requires a forward pass of the
network for each edit strength. In contrast, our approach
trivially enables partial editing as a consequence of the edit
being performed through warping. Similarly to our work,
SPM+R suggests using a warping function to edit images;
yet, this is followed by inpainting, which is not resolution
agnostic. They do not demonstrate their approach for edit-
ing high resolution images (>512×512), or on a more com-
plex dataset such as Cub200. A further distinction is that
instead of using a simple smoothness loss, as we propose,
they use a warp field discriminator. Their resulting warp
fields appear substantially less smooth and less sparse than
the ones obtained by our approach.

2.2. Editing of high resolution images

Methods for editing images at high resolution can be di-
vided into two categories: (i) those that use intermediate
representations designed to upsample well, and (ii) those
that directly predict pixel values at high resolutions.

Methods designed for upsampling These approaches
are based on predicting constrained intermediate represen-
tations that are relatively agnostic to image resolution; e.g.
warp fields or local color affine transformations.

Warp fields, if sufficiently smooth, can be predicted at a
lower resolution, upsampled and applied at high resolution
with minimal loss of accuracy. Previous work has applied
them to: redirecting eye gaze [8], editing emotional ex-
pressions [35] and synthesizing objects in novel views [37].
However, these methods require paired training data.

Spatial Transformer GANs [18] predict a global affine
deformation for image compositing. Although the defor-
mation can be applied at arbitrary resolutions, face editing
by compositing is limiting, as it requires an infeasibly large
dataset of suitable face parts to use as foreground images.

Local affine color transformations [4, 10] have been pre-
dicted from low resolution images and applied at the origi-
nal resolution. However, these methods require paired data
and have limited capacity for making semantic changes.

Blendshapes have been used as an intermediate repre-
sentation to edit expressions in the context of video reen-
actment [29, 21]. Similar to our approach, the blendshape
weights are resolution independent. However, several input
video frames are required for the blendshape face model.

Rather than predict intermediate representations,
iGAN [38] trains a low-resolution GAN and then fit a dense
warp field and local affine color transformation to a pair
of input-output images. The GAN generator is unaware of
these restricted transformations, so it may learn edits that
are not representable by such transformations.

Direct prediction at high resolution Several techniques
have been proposed to scale deep image synthesis meth-
ods to larger resolutions. These include: synthesizing im-
ages in a pyramid of increasing resolutions [7], employing
fully convolutional networks trained on patches [17], and
directly in full resolution [3, 15]. These methods have been
successfully applied for image enhancement [13] and face
editing [25, 9]. A limitation for direct or pyramid based ap-
proaches is that they do not scale well with resolution, while
training on patches assumes that global image information
is not needed for the edit.

A method that modifies an image by following the gra-
dient directions of a pretrained classification network, until
it is classified as having the target attributes was proposed
in [31]. However, this approach fails when the input resolu-
tion differs significantly from the training data.

In WG-GAN [9] the input image is warped based on a
target image and two GAN generators are used thereafter
to synthesize new content. Contrary to our method, WG-
GAN requires paired data during training, cannot be applied
at arbitrary resolutions, does not provide semantic controls
and does not support partial edits.

3. Background

We start by reviewing GAN [11], Cycle-GAN [39] and
StarGAN [5], as the latter is the basis for our model.



Figure 2: Overview of our model, which consists of a generator, G, and a discriminator, D. The generator contains a warping network, W ,
and a warping operator, T . The inputs to W are an RGB image, x, and a transformed label vector, ĉ. The output is a dense warp field, w,
which can be used by T to deform the input image and produce the output image, x̄. A label operator, B, converts the transformed labels,
ĉ, to binary labels, c̄. The discriminator evaluates both the input image, x, and the generated image, x̄, for realism and the presence of
attributes that agree with the labels. In this example, the only change between c̄ and c is the label for the attribute “big nose”.

Generative Adversarial Network (GAN) [11] models
consist of two parts, a generator and a discriminator. The
generator produces samples that resemble the data distribu-
tion samples, and the discriminator classifies data samples
as real or fake. The discriminator is trained with the real ex-
amples drawn from a training set and the fake examples as
the output of the generator. The generator is trained to fool
the discriminator into classifying generated samples as real.
Formally, GANs are defined by a minimax game objective:

minG maxD Ex [ log(D(x)) ] + Ez [ log(1−D(G(z))) ] , (1)

where x is a sample from the dataset empirical distribution
p(x), z is a random variable drawn from an arbitrary distri-
bution p(z), G is the generator and D is the discriminator.

Given two data domains, A and B, Cycle-GAN [39]
learns a pair of transformations G : A → B and H : B →
A. Unlike previous approaches, [14], this does not require
paired samples from A and B, but instead utilizes a cycle
consistency loss (‖xa−H(G(xa))‖1, where xa is a sample
image from domain A) to learn coherent transformations
that preserve a reasonable amount of image content. An
equivalent cycle loss is used for domain B. Cycle-GAN
models are limited in that they require 2 generators and 2
discriminators for each domain pair.

Cycle-GAN was generalized by StarGAN [5] to require
only a single generator and discriminator to translate be-
tween multiple domains. Here, each image x has a set of
domains, represented as a binary vector c. We use (x, c) to
denote a pair sampled from the annotated data distribution.
The generator,G(x, c̄), transforms x to match the target do-
mains indicated by c̄ ∼ p(c), where p(c) is the empirical
domains distribution. The model is trained with:

i. a Wasserstein GAN [2] loss:

Ladv = Ex [D(x)]− Ex,c̄ [D(G(x, c̄))] , (2)

ii. a Wasserstein gradient penalty [12] term:

Lgp = Eẋ

[
(‖∇ẋD(ẋ)‖2 − 1)

2
]
, (3)

iii. a cycle consistency loss:

Lc = E(x,c),c̄ [‖x−G(G(x, c̄), c)‖1] , (4)

iv. and domain classification losses:

Ldcls = E(x,c) [− log(C(x, c))] (5)
Lgcls = Ex,c̄ [− log(C(G(x, c̄), c̄))] , (6)

whereC(x, c) is a classifier that outputs the probability that
x has the associated domains c, and ẋ is sampled uniformly
along a line between a real and fake image. The classifier is
trained on the training set (eq. 5) and eq. 6 ensures that the
translated image matches the target domains.

4. Methodology
Our goal is to learn image transformations that can be

applied at arbitrary scales without paired training data. An
overview of our system is shown in Figure 2. We employ
the StarGAN framework as the basis for our model and use
the notation introduced above. As we focus on semantic
face editing, we use indistinctly semantic attributes or bi-
nary labels to refer to the domains, c and c̄.
Warp parametrization We modify the generator such
that the set of transformations is restricted to non-linear
warps of the input image:

G(x, c̄) = T (x,W (x, c̄)), (7)

where W (x, c̄) = w is a function that generates the warp
parameters. T is a predefined warping function that applies
a warp to an image. W is chosen to be a neural network. We
employ a dense warp parametrization, where w contains a
displacement vector for each pixel in the input image. At
train time, T warps the input according to the generated dis-
placement field, w, using bilinear interpolation. To improve
image quality at inference time we use a bicubic interpolant.

4.1. Learning

We use the same adversarial losses (eq. 2 and eq. 3) and
domain classification loss (eq. 5) as StarGAN.



Warp cycle loss The cycle consistency loss (eq. 4) is
modified to produce warp fields that are inverse consistent,
i.e. the composition of the forward and backward transfor-
mations yields an identity transformation:

Lc = E(x,c),c̄

[
‖T (T (A,w), w̄))−A‖22

]
, (8)

where w̄ = W (G(x, c̄), c), and A is a two channel image
where each pixel takes the value of its coordinates. This
loss is more informative than eq. 4, as a pixel loss provides
no information for warps inside constant color regions.
Smoothness loss The warping network estimates an inde-
pendent deformation per pixel. As such, there are no guar-
antees that the learned warps will be smooth. Therefore,
an L2 penalty on the warp gradients is added to encourage
smoothness. In practice a finite-difference approximation is
used as

Ls = Ex,c̄

[
1
n

∑
(i,j) ‖wi+1,j −wi,j‖22 + ‖wi,j+1 −wi,j‖22

]
,

(9)
where n is the number of pixels in the warp field, and wi,j

is the displacement vector at pixel coordinates (i, j).
Binary label transformation As mentioned in section 1,
a StarGAN type model can make unexpected edits when
modifying attributes. At inference time, the attribute clas-
sifier is used to infer the original labels. Depending on the
desired edits, these labels are either changed or copied to the
target vector. This means that the model cannot distinguish
between the edited attributes and the copied ones. Thus, the
model tends to accentuate the copied attributes.

To address this issue, we propose to explicitly instruct
the generator on which attributes should be edited. The la-
bels for the generator are transformed to contain three val-
ues, [−1, 0, 1], where −1 indicates that the attribute should
be reversed, 0 that it should remain unaffected, and 1 that
it should be added. This approach has two distinct benefits.
First, it leads to more localized edits. Second, it removes
the need for a classifier during inference, as the unedited
entries in the transformed target labels can be set to zero.

The classifier loss for the generator (eq. 6) is modified to
only penalize the attributes that should be edited:

Lgcls = Ex,ĉ

[
−h

r−1∑
i=0

|ĉi| log (C(G(x, ĉ), c̄i))

]
, (10)

where ĉ are the transformed target labels, r is the number of
attributes, and h = r/‖ĉ‖1 is a normalization factor, which
ensures that there is no bias with respect to the number of
edited attributes. During training, the transformed target la-
bel for each attribute, ĉi, is sampled independently from a
Categorical distribution with probabilities [0.25, 0.5, 0.25].
As both types of labels are needed for the classification loss,
a label operator, c̄i = B(ĉi), is used to reverse the transfor-
mation, which is defined as B(−1) = 0 and B(1) = 1.
B(0) is undefined as its loss is zero by construction.

Input WarpGAN+ StarGAN [5] SGFlow 0.05 SGFlow 0.15

Figure 3: Employing a dense flow method [36] to transfer a “big
nose” edit from StarGAN [5]. Results for the flow method with
λ = 0.05 and λ = 0.15 are shown. StarGAN has edited the input
to such lengths that good correspondences between the input and
output cannot be found by the flow method.

Complete objective The joint losses for the discriminator
and the generator are defined as

LD = −Ladv + λgpLgp + λclsL
d
cls, (11)

LG = Ladv + λclsL
g
cls + λcLc + λsLs, (12)

where λcls, λgp, λc and λs are hyper-parameters that con-
trol the relative strength of each loss. The classification loss
in eq. 10 is used for images with several not mutually ex-
clusive binary attributes, and eq. 6 is used otherwise.

4.2. Inference

Once the model parameters have been optimized, an in-
put image of arbitrary size can be edited in a single forward
pass of the network.

The input image is resized to match the resolution of the
training data, and the transformed target labels, ĉ, are set
according to the desired edit. Then, the resized image and
target labels are fed into the warping network, which pro-
duces a suitable warp field, w. The warp field displacement
vectors are rescaled and resampled to the original image
resolution. Lastly, the original image is warped using the
resampled warp field to produce the final edited image.

5. Results
5.1. Datasets

We evaluate our method and baselines on a face dataset,
CelebA [19] and a birds dataset, Cub200 [32].

CelebA The CelebA [19] dataset contains 202,599 im-
ages of faces and we use the train/test split recommended
by the authors. Importantly, from the 40 binary attributes
provided, we choose the ones more amenable to be char-
acterized by warping, namely: smiling, big nose, arched
eyebrows, narrow eyes and pointy nose.

Cub200 The Cub200 [32] dataset contains 11,788 images
of 200 bird species. The images are annotated with 312 bi-
nary attributes and a semantic mask of the bird body. We
choose the three binary attributes that correspond to the
beak size relative to the head and remove the background
using the semantic masks. The train/test split recommended
by the authors is employed. Due to the alignment step dis-
cussed below, only 2,325 images are used for training.
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Figure 4: Comparison to previous work on the CelebA dataset. For a given input image, first column, each method attempts to transfer
the semantic attribute in its corresponding column. A re-identification score and attribute probability are shown as (id / cls) on top of each
image (higher is better). Our approach edits the attributes of the input images while better preserving the identity of the subject.

StarGAN [5] WarpGAN StarGAN [5] WarpGAN

Input Beak smaller
than head

Beak larger
than head

Beak smaller
than head

Beak larger
than head Input Beak smaller

than head
Beak larger
than head

Beak smaller
than head

Beak larger
than head

Figure 5: Comparison to previous work on the Cub200 dataset. Each model attempts to transfer the attribute (relative beak size) in each
column to the input image. StarGAN is unable to produce good quality edits on this dataset, while our model edits the input images in a
more plausible manner. Due to the more complex nature of this dataset, our model still struggles to produce artifact free transformations.
Results from this model at the original image resolution, and without masking the background, can be found in the supplemental material.

Face alignment For both datasets, we make use of
face landmark locations to align and resize the images to
128×128 using a global affine transformation, at both train-
ing and test time. At test time, the inverse of the affine
transformation is used to transform the warp fields. The
warp is then applied directly to the original image. This
is in contrast with previous methods, that would edit the
aligned image and then warp the edited image to the orig-
inal space. For images outside of the test set, off-the-shelf
methods [16] can be used to align them to the dataset.

5.2. Models

Our main baseline is StarGAN [5], a state of the art
model for image-to-image translation. We define three
novel models to evaluate our contributions. WarpGAN de-
notes models that output a warp field. A “+” suffix indi-
cates models that employ our binary labels transformation
scheme. Thus, StarGAN+ evaluates the effect of label trans-
formation, and WarpGAN+ is our final proposed model.

An obvious alternative to our model consists of fitting a
dense flow field to the results generated by StarGAN. We
tested it using the dense optical flow matching technique
described in [36], and we denote this method by SGFlow.

An example of SGFlow is shown in Fig. 3, using opti-
cal flow [36]. Warping based on optical flow may lead to
artefacts when good correspondences are not found. Con-
straining StarGAN to generate images that are amenable to
optical flow estimation is not trivial. Hence, this experi-
ment shows that a naı̈ve approach for applying the result of
a StarGAN model to a higher resolution image is subopti-
mal. Thus, we drop SGFlow for the remaining experiments.

We also experimented with the GANimation [26] ap-
proach using the code provided by the authors. However
we were unable to generate meaningful results when train-
ing the method with binary attributes. We suspect that this
is due to the method’s reliance on soft action unit labels.

Hyper-parameters All models were trained on a single
Titan X GPU using TensorFlow [1]. The models hyper-



α = −0.25 α = 0 α = 0.2 α = 0.4

α = 0.6 α = 0.8 α = 1.0 α = 1.25

Figure 6: Partial editing with our model, for the “smile” attribute.
A single warp is generated by our model, which is interpolated
and extrapolated by scaling the magnitude of its values by α. The
input image, α=0, is progressively edited in both directions.

parameters are: λcls = 2, λgp = 10, λc = 10 and λs = 125.
For the StarGAN baseline we employ the implementa-

tion provided by the authors, where we keep all their rec-
ommended hyper-parameters except for λcls = 0.25. The
choice of λcls, for StarGAN and our models, is informed
by the results shown in Fig. 8. Additional implementation
details are provided in the supplementary material.

5.3. Qualitative results

We show qualitative results on the CelebA dataset in
Fig. 4. For each input image, we show the edited images
corresponding to changing a single attribute. StarGAN [5]
often changes characteristics that are not related to the per-
turbed attributes, such as the skin tone or the background
color. StarGAN+ produces more localized edits than Star-
GAN. The WarpGAN+ edit for the “no smile” attribute is
not particularly realistic. However, for most edits, our tech-
nique generates changes that are less exaggerated and better
preserve the identity of the subject.

Qualitative results for the masked and aligned Cub200
dataset are shown in Fig. 5. Our approach is able to transfer
the corresponding attribute, albeit sometimes producing un-
realistic additional deformations. The poor quality results
of StarGAN may be attributed to the increased complexity
of this dataset and the reduced number of images, compared
to CelebA. This is a generous comparison, as the predicted
warp fields can be applied to the original images with com-
plex backgrounds and at higher resolutions, as shown in the
supplemental material. Fig. 1 demonstrates editing at far
higher resolutions than can be achieved by direct methods.

Please see the supplemental material for animated edits,
additional results and more examples of failure cases.

Partial edits Another advantage of our model is that once
a warp field has been computed for an input image, partial
edits can be applied by simply scaling the predicted dis-
placement vectors by a scalar, α. Results of interpolation
and extrapolation of warp fields generated by our model are
shown in Fig. 6. This is a cheap operation as it does not re-
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Figure 7: Stretch maps computed from the warp fields, for both
WarpGAN and WarpGAN+. The log determinant of the Jacobian
of the warp is shown, where blue indicates stretching and red cor-
responds to squashing. Our binary labels transformation scheme,
used by WarpGAN+, leads to correctly localized edits.

quire to run the network for each new value of α, in contrast
with previous methods that allow for partial edits [26]; this
allows for edits to be performed at interactive speeds.

Visualizing warp fields A further advantage of our model
is the interpretability of its edits. This is demonstrated in
Fig. 7, where we show the log determinant of the Jaco-
bian of the warp field, which illustrates image squashing
and stretching. It can be seen how employing our binary
label transformation scheme leads to more localized edits.
Moreover, the values from the stretch maps can potentially
be used to automatically determine which areas have been
stretched or compressed excessively by the network. Thus
they provide an intuitive measure to detect unrealistic edits.

5.4. Quantitative results

Quantitative evaluation is challenging for our setting. We
provide two methodologies: the first measures the model
performance based on separately trained networks, and the
second is a user study to estimate perceptual quality.

Accuracy vs identity preservation We train a separate
classifier on the training data, to estimate quantitatively if
the edited images have the requested attributes. The clas-
sifier has the same architecture as the discriminator and is
trained with the cross entropy loss of eq. 5. We also use
a pretrained face re-identification model [27] to evaluate
whether the edits preserve the identity.2

Results of both experiments are shown in Fig. 8, where
an ideal editing model would be located on the top-right.
On the x-axis we show the rate of images classified as
having the target attribute (attribute accuracy), defined as
1
m

∑
[C(x, c̄) ≥ 0.5], where m is the total number of im-

ages. On the y-axis, an identity preservation score is shown,
which is evaluated as 1− 1

m

∑
d(x, x̄), where d(·) is the L2

distance between the input and the edited image in the fea-
ture space of the face re-identification network. A distance

2Additional details can be found in the supplemental material.
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Figure 8: Presence of the edited attribute (x-axis) vs face re-
identification score (y-axis), higher is better. The classification
loss weight, λcls, is shown on top of each marker. Highlighted in
gray is the value used by the StarGAN authors for this dataset, and
in purple the ones used in this paper. Compared to previous work,
our model produces edits that better preserve identity.

larger than 1.2 (score lower than −0.2) has been used to
indicate that two faces belong to different people [27].

There is a trade-off between attribute transfer and iden-
tity score. On one extreme, a new face that has the target
attribute and does not match the original face would achieve
maximal attribute accuracy with negative identity score. On
the other, not modifying the image has maximal identity
score, yet it does not achieve the target edit. With re-
spect to StarGAN, our binary labels transformation scheme
(StarGAN+) moves the curve towards higher attribute trans-
fer with comparable identity score. Our warping approach
(WarpGAN+) allows for stronger identity preservation than
StarGAN+. Overall, our approach better preserves identity
than previous work, for similar levels of attribute transfer.
Moreover, we picked λcls based on these results: choosing
the value that leads to both high accuracy and identity score.

Accuracy vs realism We perform a user study on Ama-
zon Mechanical Turk (MTurk) to evaluate the quality of the
generated images, for StarGAN, StarGAN+ and our model.
For each method, we use the same 250 test images from
CelebA and edit the same attribute per image.

We conducted two experiments, one to evaluate the real-
ism of the images, where the workers had to answer whether
the image presented was real or fake, and another to eval-
uate attribute editing, where we asked the workers whether
the image contains the target attribute. In both experiments,
the workers were randomly shown a single image at a time:
either an edited image or an unaltered original image.2

Results of this user study are shown Fig. 9. A useful edit-
ing model has a high-level of realism and can produce the
target edit. For the real data, the workers reliably evaluated
image realism, however they were often inconsistent with
the attribute labels. Nonetheless, the workers performance
on real data should not be taken as an upper bound, as all
methods tend to generate exaggerated edits to maximize
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Figure 9: Human perception of the presence of the desired at-
tribute (attribute accuracy) vs realism of the image, as indicated by
the user study (higher is better). Images generated by our model
are more realistic than those generated by previous work.

correct classification. For the editing models, the attribute
accuracy is consistent to that reported by the classifier net-
work in Fig. 8. However, identity score and realism do not
align, as they measure different notions. An image might
contain only small edits, which the identity network is in-
variant to, yet those edits could include unrealistic artefacts
that can be easily detected by humans. All editing models
achieve good attribute transfer accuracy, with room for im-
provement mostly on the realism axis. Our model (Warp-
GAN+) achieves this for most attributes, and it is able to
generate images that are more realistic than previous work.

6. Conclusions

This paper has introduced a novel way to learn how
to perform semantic image edits from unpaired data using
warp fields. We have demonstrated that, despite limitations
on the set of edits that can be described using warping alone,
there are clear advantages to modelling edits in this way:
they better preserve the identity of the subject, they allow
for partial edits, they are more interpretable, and they are
applicable to arbitrary resolutions. Moreover, our binary la-
bel transformation scheme leads to increased performance,
and removes the need to use a classifier during inference.

For future work, intermediate representations that up-
sample well could be added to increase the model flexibility,
such as local color transformations [10]. Also, an inpainting
method [24] could be locally applied in areas that have been
warped excessively, which could be automatically detected
using the log determinant of the Jacobian of the warp fields.
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jomand Bigdeli, Paolo Favaro, and Matthias Zwicker.
Faceshop: Deep sketch-based face image editing. ACM
Trans. Graph., 37(4):99:1–99:13, July 2018. 2, 3

[26] A. Pumarola, A. Agudo, A.M. Martinez, A. Sanfeliu, and
F. Moreno-Noguer. Ganimation: Anatomically-aware facial
animation from a single image. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), 2018. 1, 2, 3,
6, 7



[27] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2015. 7, 8

[28] Wei Shen and Rujie Liu. Learning residual images for face
attribute manipulation. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), July 2017. 3

[29] Justus Thies, Michael Zollhofer, Marc Stamminger, Chris-
tian Theobalt, and Matthias Niessner. Face2face: Real-time
face capture and reenactment of rgb videos. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016. 3

[30] Matthew A Turk and Alex P Pentland. Face recognition us-
ing eigenfaces. In The IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 586–591. IEEE,
1991. 1

[31] Paul Upchurch, Jacob Gardner, Geoff Pleiss, Robert Pless,
Noah Snavely, Kavita Bala, and Kilian Weinberger. Deep
Feature Interpolation for image content changes. In Com-
puter Vision and Pattern Recognition (CVPR), 2017. 2, 3

[32] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Technical re-
port, 2011. 1, 5

[33] Po-Wei Wu, Yu-Jing Lin, Che-Han Chang, Edward Y.
Chang, and Shih-Wei Liao. Relgan: Multi-domain image-
to-image translation via relative attributes. In The IEEE In-
ternational Conference on Computer Vision (ICCV), October
2019. 2, 3

[34] Ruizheng Wu, Xin Tao, Xiaodong Gu, Xiaoyong Shen, and
Jiaya Jia. Attribute-driven spontaneous motion in unpaired
image translation. In The IEEE International Conference on
Computer Vision (ICCV), October 2019. 2, 3

[35] Raymond A. Yeh, Ziwei Liu, Dan B Goldman, and Aseem
Agarwala. Semantic facial expression editing using autoen-
coded flow. arXiv preprint arXiv:1611.09961, 2016. 1, 2,
3

[36] C. Zach, T. Pock, and H. Bischof. A duality based approach
for realtime tv-l1 optical flow. In Pattern Recognition, pages
214–223, Berlin, Heidelberg, 2007. Springer Berlin Heidel-
berg. 5, 6

[37] Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Ma-
lik, and Alexei A. Efros. View synthesis by appearance flow.
In Computer Vision – ECCV 2016, pages 286–301. Springer
International Publishing, 2016. 3

[38] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and
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