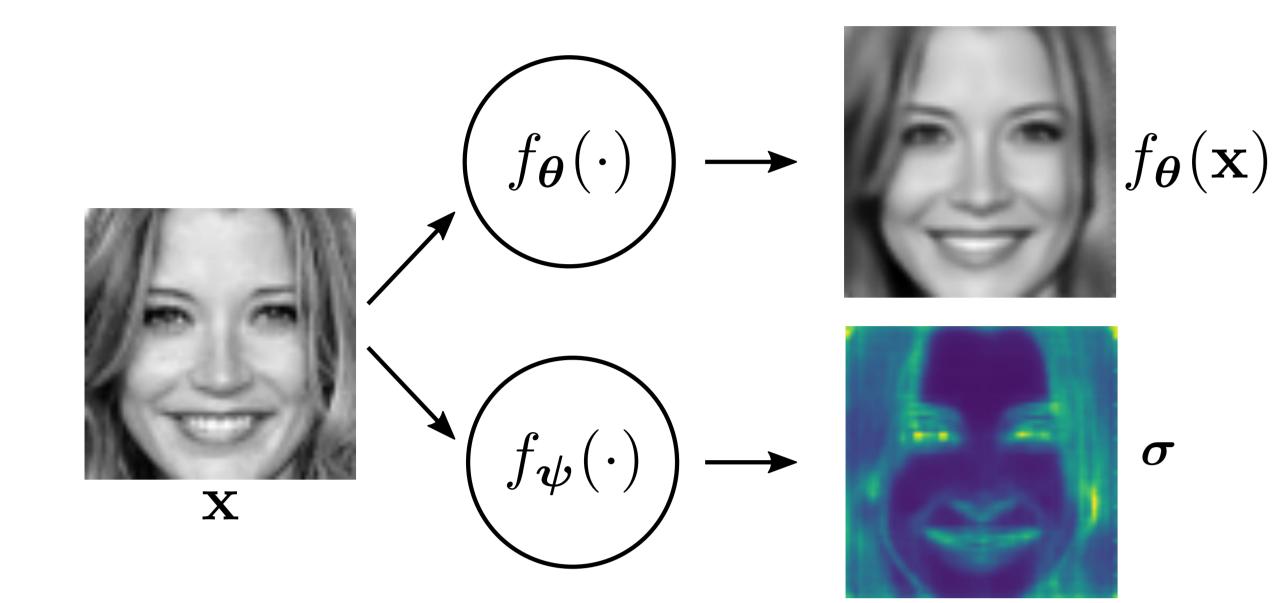


NTRODUCTION

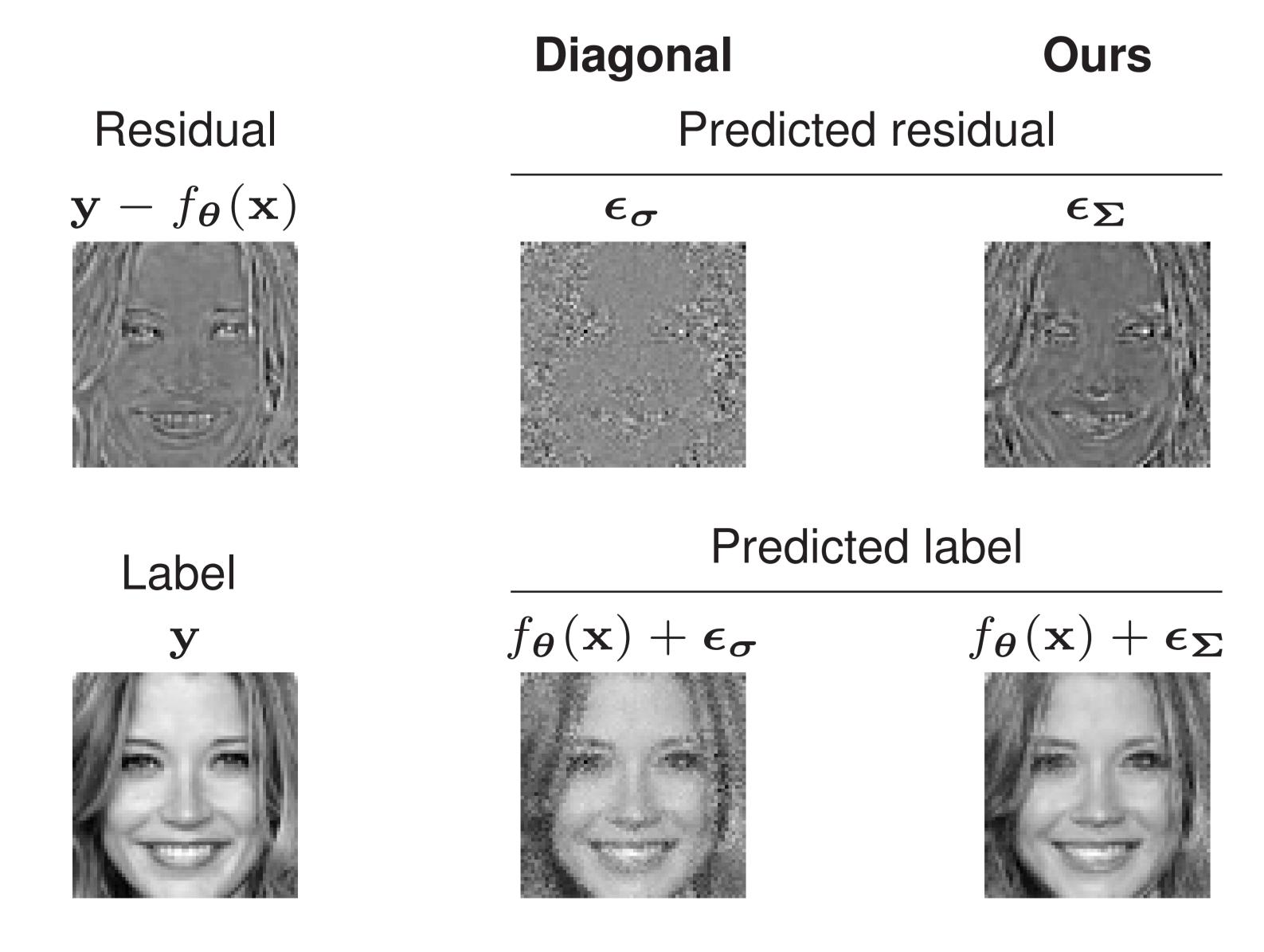
We are interested in modeling output uncertainty in generative DNN models.



Predictive uncertainty can be useful in image editing or model-based decision making.

It is common [1, 2, 3] to use a factorized noise model, $\mathbf{y} = f_{\boldsymbol{\theta}}(\mathbf{x}) + \boldsymbol{\epsilon}$, where $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\sigma}^2 \mathbf{I})$.

For images, the factorized assumption does not hold, so we propose to use structured uncertainty, $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$.



The estimation of the residual covariance matrix, Σ , is complicated by only having a single residual image, ϵ , per input, x.

Structured Uncertainty Prediction Networks Sara Vicente² Lourdes Agapito³ Neill D.F. Campbell¹ Garoe Dorta^{1,2} Ivor Simpson² ²Anthropics Technology Ltd. ³University College London ¹University of Bath

METHODOLOGY

We design a structured uncertainty prediction network for a pretrained VAE [1] model:

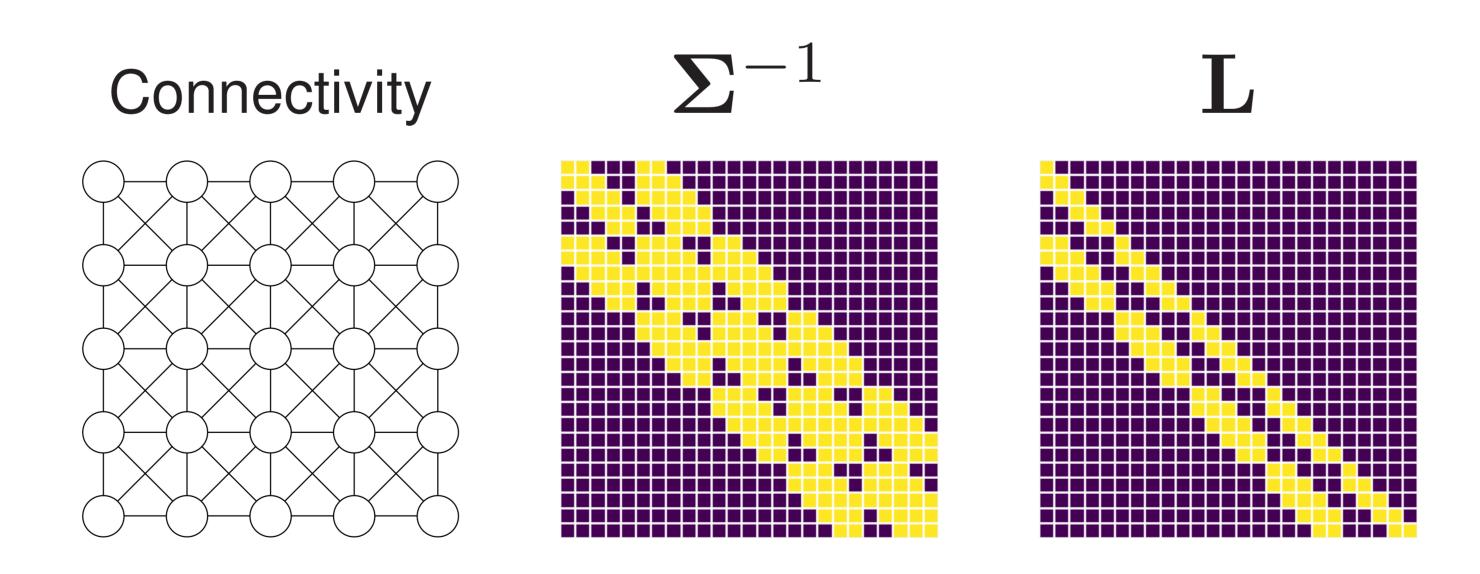
 $p_{\boldsymbol{\theta}}(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\boldsymbol{\mu}(\mathbf{z}), \boldsymbol{\Sigma}_{\boldsymbol{\psi}}(\mathbf{z})).$

$$\mathbf{x} \underbrace{\left(\begin{array}{c} \mathbf{CNN} \\ \mathbf{CNN} \end{array} \right)}_{\mathbf{CNN}} \underbrace{\left(\begin{array}{c} \mathbf{CNN} \\ \mathbf{CNN} \end{array} \right)$$

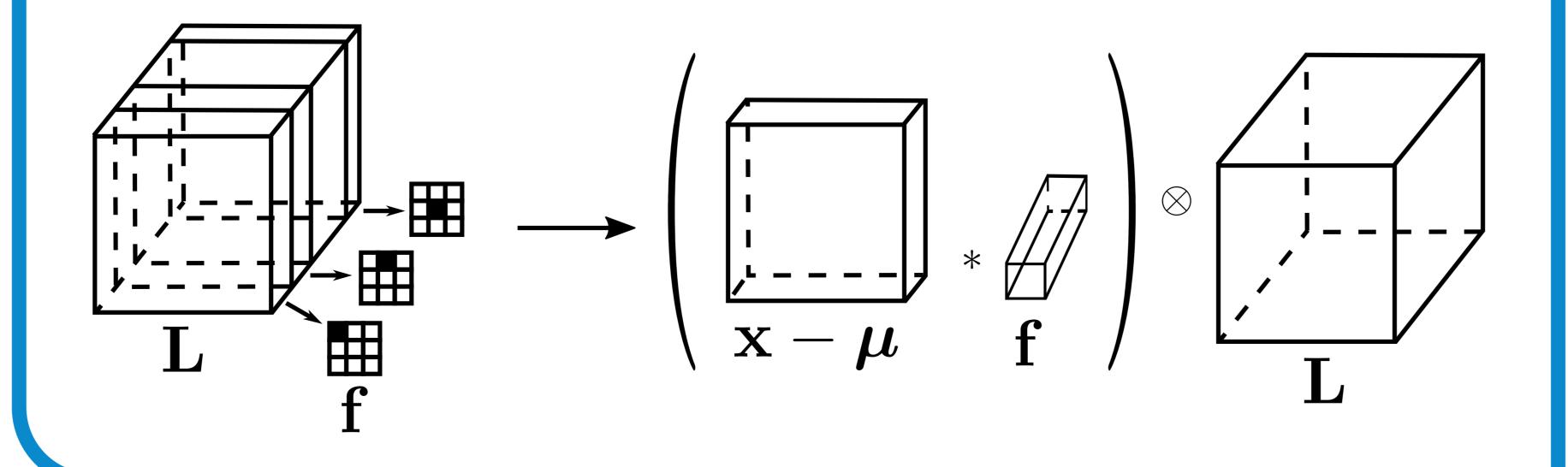
The model is trained via maximum likelihood:

$$\min_{\boldsymbol{\psi}} \log \left(\left| \boldsymbol{\Sigma}_{\boldsymbol{\psi}} \right| \right) + \left(\mathbf{x} - \boldsymbol{\mu} \right)^{\mathsf{T}} \left(\boldsymbol{\Sigma}_{\boldsymbol{\psi}} \right)^{-1} \left(\mathbf{x} - \boldsymbol{\mu} \right).$$

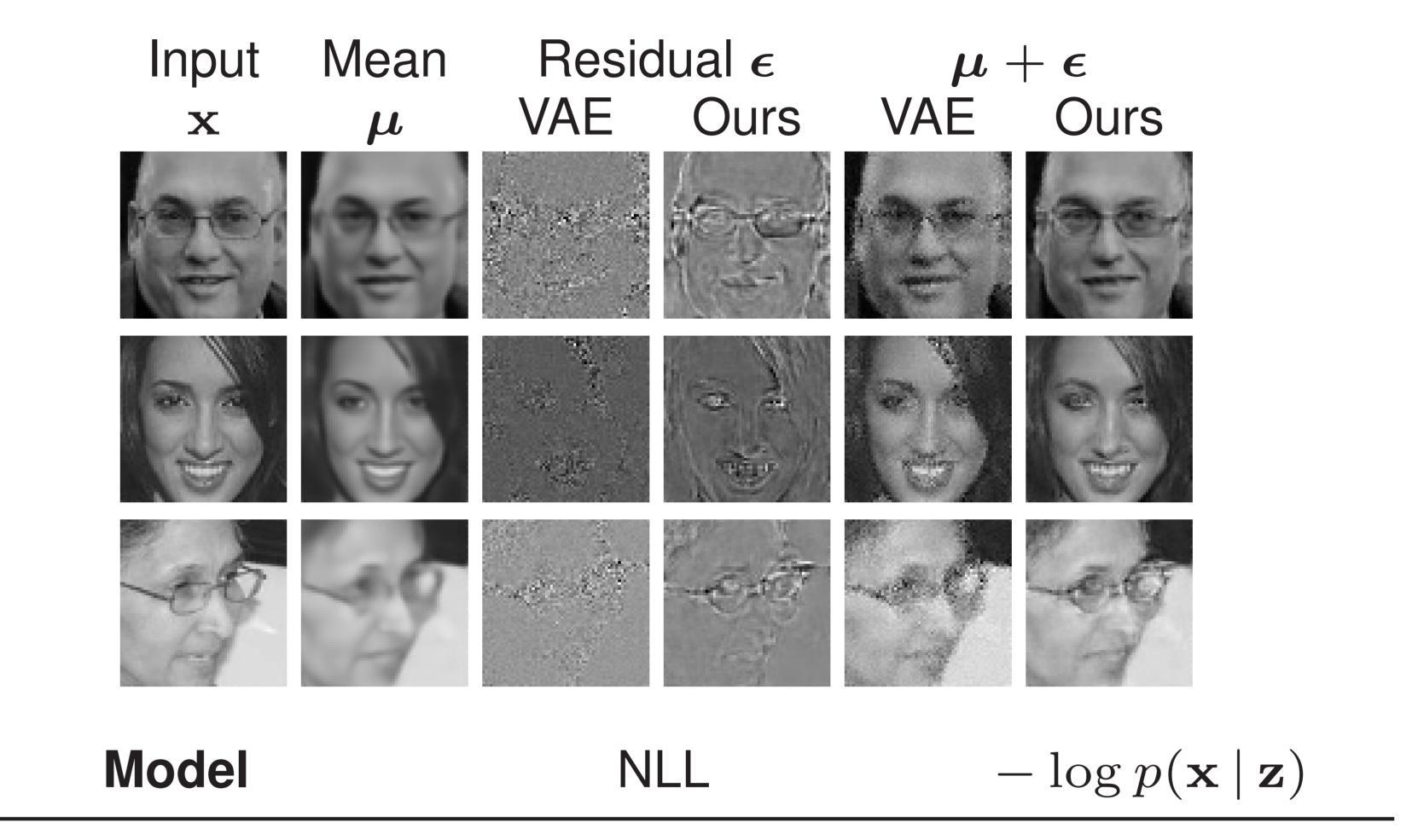
Inference and learning is made tractable by imposing sparsity on the matrix L, where $\Sigma^{-1} = \mathbf{L}\mathbf{L}^{\dagger}$ is a Cholesky decomposition.



Efficient convolutional implementation



RECONSTRUCTIONS

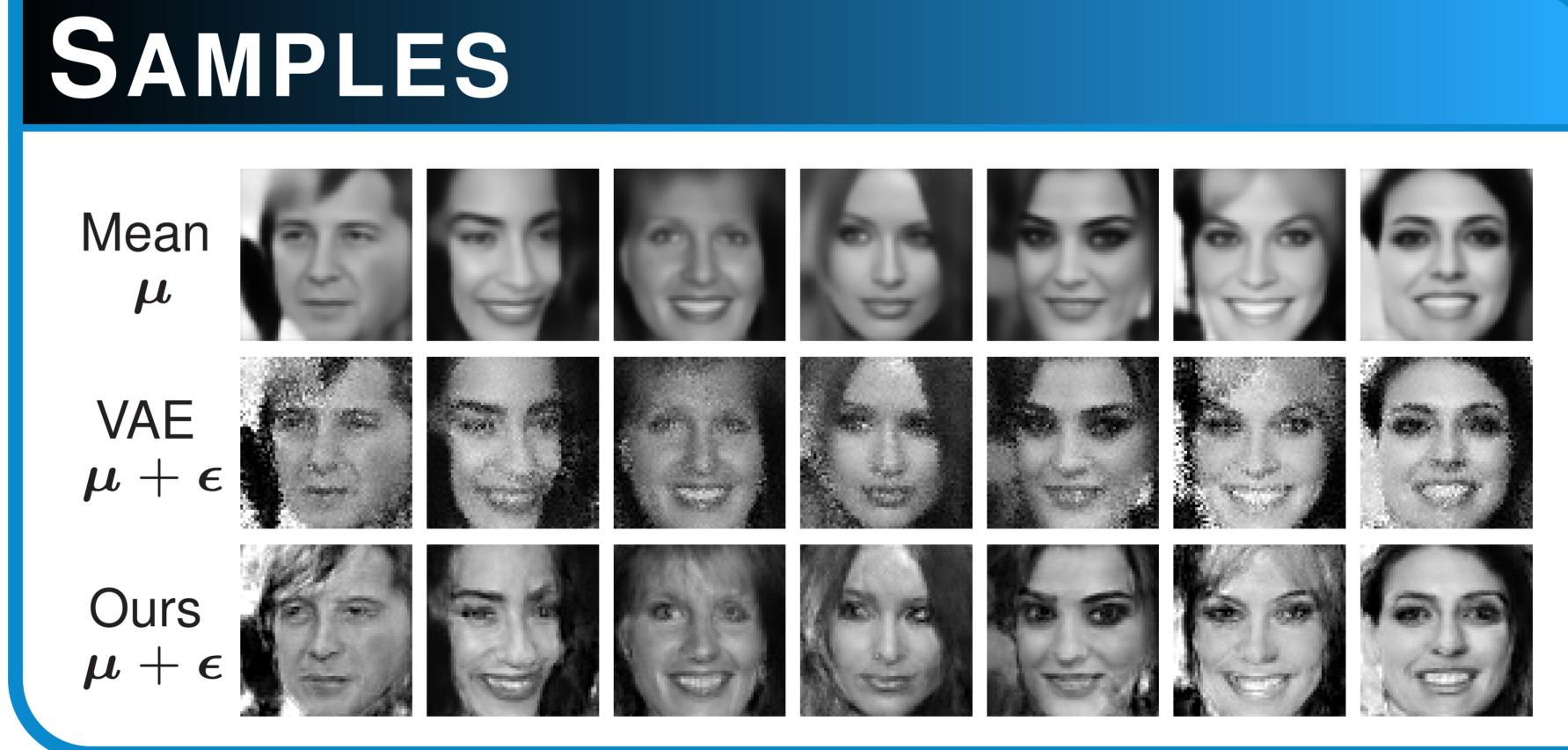


VAE [1]

urs	-7753 ± 1323	

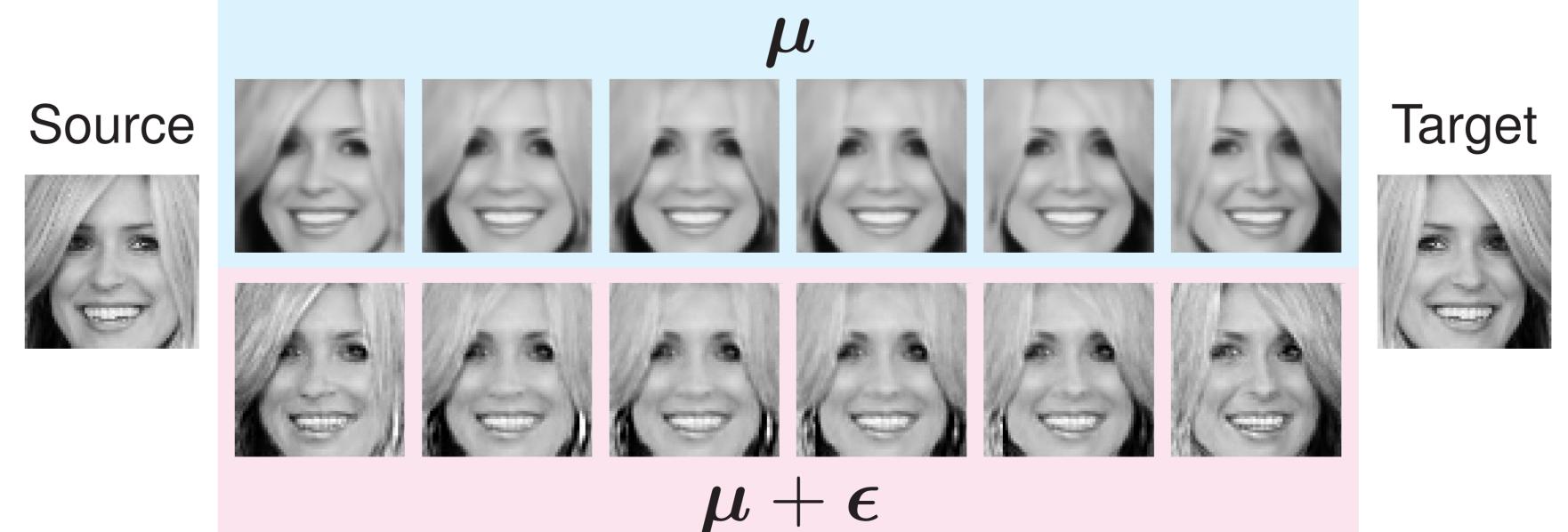
 -5378 ± 931

 -6079 ± 936 -8386 ± 1339



NTERPOLATIONS

Source

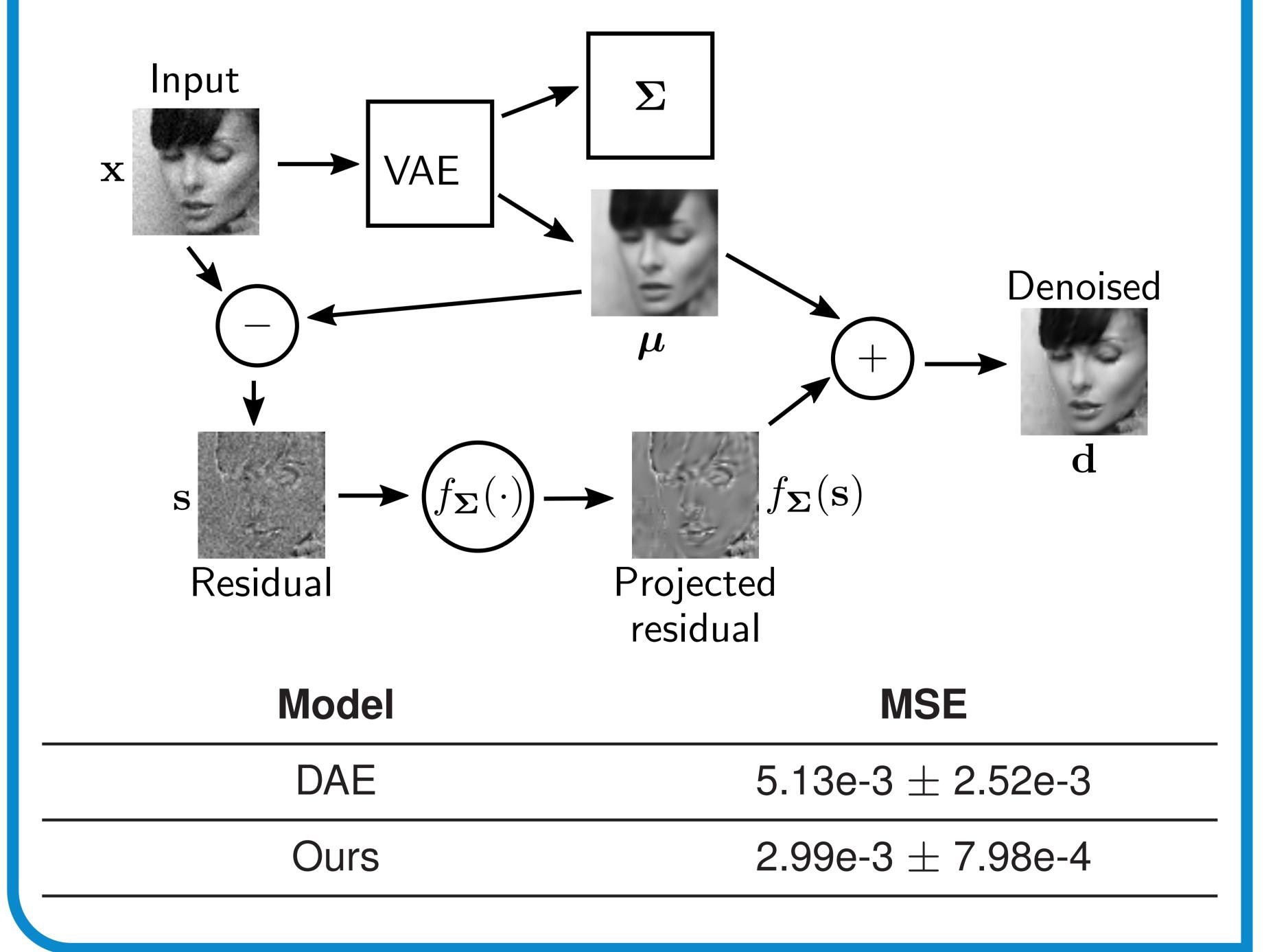


Samples while interpolating on the latent space z from the source to the target image.

APPLICATION: DENOISING

Ours DAE Mean Noisy Proj. Original Input residual residual image $f_{\sum}(\mathbf{s})$ 221 22 3 37

Denoising by recovering a more likely residual under $\mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$, by projecting the noisy residual onto the principal eigenvectors of Σ .



REFERENCES

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. ICLR, 2014. Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backprop-

agation and approximate inference in deep generative models. ICML, 2014. [3] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational framework. In ICLR, 2017.