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INTRODUCTION
We are interested in modeling output uncer-
tainty in generative DNN models.

Predictive uncertainty can be useful in image
editing or model-based decision making.

It is common [1, 2, 3] to use a factorized noise
model, y = fθ(x) + ε, where ε ∼ N

(
0,σ2I

)
.

For images, the factorized assumption does
not hold, so we propose to use structured un-
certainty, ε ∼ N

(
0,Σ

)
.

Diagonal Ours

Residual Predicted residual
y − fθ(x) εσ εΣ

Label Predicted label

y fθ(x) + εσ fθ(x) + εΣ

The estimation of the residual covariance ma-
trix, Σ, is complicated by only having a single
residual image, ε, per input, x.

METHODOLOGY
We design a structured uncertainty prediction
network for a pretrained VAE [1] model:

pθ(x | z) = N
(
µ(z),Σψ(z)

)
.

The model is trained via maximum likelihood:

min
ψ

log
(∣∣Σψ∣∣)+ (

x− µ
)T(

Σψ
)−1(

x− µ
)
.

Inference and learning is made tractable by
imposing sparsity on the matrix L, where
Σ−1 = LL

T

is a Cholesky decomposition.

Connectivity Σ−1 L

Efficient convolutional implementation

RECONSTRUCTIONS
Input Mean Residual ε µ+ ε
x µ VAE Ours VAE Ours

Model NLL − log p(x | z)

VAE [1] −5378± 931 −6079± 936

Ours −7753± 1323 −8386± 1339
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INTERPOLATIONS

Source

µ
Target
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Samples while interpolating on the latent
space z from the source to the target image.

APPLICATION: DENOISING
Original Input Mean Noisy Proj. Ours DAE
image residual residual

x µ s fΣ(s) d

Denoising by recovering a more likely residual
under N

(
0,Σ

)
, by projecting the noisy resid-

ual onto the principal eigenvectors of Σ.

Model MSE

DAE 5.13e-3 ± 2.52e-3

Ours 2.99e-3 ± 7.98e-4
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