
Supplement:
Laplacian Pyramid of Conditional Variational Autoencoders

Garoe Dorta
University of Bath

Anthropics Technology Ltd.
g.dorta.perez@bath.ac.uk

Sara Vicente
Anthropics Technology Ltd.

sara@anthropics.com

Lourdes Agapito
University College London

l.agapito@cs.ucl.ac.uk

Neill D.F. Campbell
University of Bath

n.campbell@bath.ac.uk

Simon Prince
Anthropics Technology Ltd.
simon.prince@anthropics.com

Ivor Simpson
Anthropics Technology Ltd.

ivor@anthropics.com

A NETWORK ARCHITECTURE

Table 1 contains a detailed description of the layers used in the 128×128 model. In order to provide a more intuitive understanding
of the architecture, the tensor size after applying each transformation is specified as well. For the 64×64 architecture the same
parameters were used, after removing the networks for the 0 level. The parameters for each 𝑀 network are doubled, where one
branch is used to predict the means and the other to predict the variances.
For the network input data, we follow the same procedure as Larsen et al. [1]. The images from the CelebA [2] dataset are centered
cropped with a bounding box with top-left and bottom-right corners at [40,15] and [188,163] and downsampled to 64×64 or
128×128. The pixel values are normalized in the [0,1] range, and we augment the data by randomly flipping the images horizontally.

This is an author-prepared pre-print, the definitive version appears in
the ACM Digital Library.

,

©



, G. Dorta et al.

Table 1: Network architecture

Kernel Size Stride Output channels Output Size

Encoder 0

Convolution Relu 5 × 5 2 64 64 × 64 × 64

Convolution Relu 5 × 5 2 128 32 × 32 × 128

Convolution Relu 5 × 5 2 256 16 × 16 × 256

Fully Connected Relu - - 2048 1 × 1 × 2048

Decoder 0

Fully Connected Relu - - 65536 16 × 16 × 256

Transposed Convolution Relu 5 × 5 2 256 32 × 32 × 256

Transposed Convolution Relu 5 × 5 2 128 64 × 64 × 128

Transposed Convolution Relu 5 × 5 2 32 128 × 128 × 32

Convolution Sigmoid 5 × 5 1 3 128 × 128 × 3

M 0

Fully Connected Relu - - 64 64

Fully Connected Relu - - 64 64

Fully Connected Relu - - 64 64

Fully Connected Relu - - 64 64

Fully Connected - - 64 64

Encoder 1

Convolution Relu 5 × 5 2 64 32 × 32 × 64

Convolution Relu 5 × 5 2 128 16 × 16 × 128

Convolution Relu 5 × 5 2 256 8 × 8 × 256

Fully Connected Relu - - 2048 1 × 1 × 2048

Decoder 1

Fully Connected Relu - - 16384 8 × 8 × 256

Transposed Convolution Relu 5 × 5 2 256 16 × 16 × 256

Transposed Convolution Relu 5 × 5 2 128 32 × 32 × 128

Transposed Convolution Relu 5 × 5 2 32 64 × 64 × 32

Convolution Sigmoid 5 × 5 1 3 64 × 64 × 3

M 1

Fully Connected Relu - - 64 64

Fully Connected Relu - - 64 64

Fully Connected Relu - - 64 64

Fully Connected - - 64 64

Encoder 2

Convolution Relu 5 × 5 2 64 16 × 16 × 64

Convolution Relu 5 × 5 2 128 8 × 8 × 128
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Table 1: Network architecture

Kernel Size Stride Output channels Output Size

Convolution Relu 5 × 5 2 256 4 × 4 × 256
Fully Connected Relu - - 2048 1 × 1 × 2048

Decoder 2

Fully Connected Relu - - 4096 4 × 4 × 256

Transposed Convolution Relu 5 × 5 2 256 8 × 8 × 256

Transposed Convolution Relu 5 × 5 2 128 16 × 16 × 128

Transposed Convolution Relu 5 × 5 2 32 32 × 32 × 32

Convolution Sigmoid 5 × 5 1 3 32 × 32 × 3

M 2

Fully Connected Relu - - 64 64

Fully Connected Relu - - 64 64

Fully Connected - - 64 64

Encoder 3

Convolution Relu 5 × 5 2 64 8 × 8 × 64

Convolution Relu 5 × 5 2 128 4 × 4 × 128

Convolution Relu 5 × 5 2 256 2 × 2 × 256

Fully Connected Relu - - 2048 1 × 1 × 2048

Decoder 3

Fully Connected Relu - - 1024 2 × 2 × 256

Transposed Convolution Relu 5 × 5 2 256 4 × 4 × 256

Transposed Convolution Relu 5 × 5 2 128 8 × 8 × 128

Transposed Convolution Relu 5 × 5 2 32 16 × 16 × 32

Convolution Sigmoid 5 × 5 1 3 16 × 16 × 3

M 3

Fully Connected Relu - - 64 64

Fully Connected - - 64 64

Encoder 4

Fully Connected Relu - - 512 512

Fully Connected Relu - - 512 512

Fully Connected Relu - - 256 256

Fully Connected Relu - - 256 256

Decoder 4

Fully Connected Relu - - 256 256

Fully Connected Relu - - 256 256

Fully Connected Relu - - 512 512

Fully Connected Relu - - 512 512

Fully Connected Sigmoid - - 192 8 × 8 × 3
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Table 1: Network architecture

Kernel Size Stride Output channels Output Size
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B ANALYSIS OF 𝜆 WEIGHTS

The regularizer term in the error function plays an important role in the quality of the reconstructions and the samples produced
by the model. A comparison of the effects of using different 𝜆0 values in the 64×64 model is shown in Figure 1. The “VAE Prior”
row denotes an architecture where each level in the Laplacian pyramid is trained with the original VAE prior, instead of our latent
space cost. The samples generated without 𝑀𝑘 functions highlight the need for a more complex distribution in the latent space, as
they are blurry and oversmoothed. The results using 𝑀𝑘 show that as 𝜆0 increases the number of artifacts present in the samples
decreases, but the quality of the reconstructions is lowered as well.

Inputs

Reconstructions Samples

VAE
Prior

0.0001

0.1

100

Figure 1: The effect of using different values for the regularizer weight 𝜆, and using the zero mean, unit variance
Gaussian prior instead of the 𝑀𝑘 functions. Inputs (top-most row), first row correspond to reconstructions and
samples from our model without 𝑀𝑘 functions, the following rows correspond to 𝜆0 = [0.0001,0.1,100], where 𝜆𝑘

for all 𝑘 ̸=0 are fixed to the same value. Without 𝑀𝑘 the images are significantly blurry, specially the samples,
and when using 𝑀𝑘 as 𝜆0 increases so does the sample quality, yet the reconstructions deteriorate.
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C ADDITIONAL RESULTS

A large number of samples and reconstructions using the 128×128 LapCVAE model are shown in Figures 2 and 3.
The total number of samples used to generate Figures 1 and 9 in the paper are shown in Figures 4, 5, 6 and 7. For each editing

example shown in the paper, the 32 samples shown here were generated, and the best four were chosen.
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Figure 2: Samples produced by LapCVAE 128×128 after fine-tuning the 𝑀𝑘 networks.
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Input VAE Ours Input VAE Ours Input VAE Ours

Figure 3: Reconstructions on the 128×128 test data for VAE and our model.
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Figure 4: Image editing example 2. (a) An input image is decomposed using a Laplacian pyramid. The user
selects an area to be edited. (b) Several samples are generated conditioned on this. (c) The selected regions are
composed with the original reconstructed image.
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Input Coarse Input Selection Reconstructed
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Figure 5: Image editing example 2. (a) An input image is decomposed using a Laplacian pyramid. The user
selects an area to be edited. (b) Several samples are generated conditioned on this. (c) The selected regions are
composed with the original reconstructed image.



Supplement: Laplacian Pyramid of Conditional Variational Autoencoders ,

Input Coarse Input Painted Reconstructed
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Figure 6: Image editing example 2. (a) An input image is decomposed using a Laplacian pyramid. The user
paints into the coarse image. (b) Several samples are generated conditioned on this. (c) The selected regions
are composed with the original reconstructed image.
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Input Coarse Input Painted Reconstructed

(a)

(b)

(c)

(b)

(c)

(b)

(c)

(b)

(c)

Figure 7: Image editing example 2. (a) An input image is decomposed using a Laplacian pyramid. The user
paints into the coarse image. (b) Several samples are generated conditioned on this. (c) The selected regions
are composed with the original reconstructed image.



Supplement: Laplacian Pyramid of Conditional Variational Autoencoders ,

REFERENCES
[1] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, and Ole Winther. 2016. Autoencoding beyond pixels using a learned similarity metric.

In Proceedings of The 33rd International Conference on Machine Learning, Vol. 48. JMLR, 1558–1566.
[2] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep Learning Face Attributes in the Wild. In Proceedings of International

Conference on Computer Vision (ICCV).


	A Network Architecture
	B Analysis of  weights
	C Additional results
	References

