Laplacian Pyramid of Conditional Variational Autoencoders

<u>Garoe Dorta^{1,2}</u> Sara Vicente² Lourdes Agapito³ Neill D.F. Campbell¹ Simon Prince² Ivor Simpson²

¹University of Bath ²Anthropics Technology Ltd. ³University College London

Generative models

Sampling and editing with generative models [1, 2, 3]

Motivation	Methodology		
000000			

Generative models

 $\hat{\mathbf{x}}$ Sample Latent vector \mathbf{Z} θ Model parameters $G(\mathbf{z}; \boldsymbol{\theta})$ Generative function $p(\mathbf{z})$ Simple known distribution

Motivation	Methodology	
000000		

Conclusions

References

Variational Autoencoders [4, 5]

- Encoder $\mathbf{z} \sim \mathsf{E}(\mathbf{x})$
- Decoder $\hat{\mathbf{x}} \sim \mathsf{D}(\mathbf{z})$
- Gaussian likelihood estimation
 - Easy to train
 - Generate blurry images

Motivation 00●0000		

Reconstruction

x Sample Generative Adversarial Networks [6]

- Generator $\hat{\mathbf{x}} = G(\mathbf{z})$
- Discriminator
- Implicit likelihood estimation
 - Impressive results
 - Unstable training
- Only for sampling

Motivation 000●000 Methodolog 0000 Results

Conclusions

References

x Sample

Generative Adversarial Networks [6]

- Generator $\hat{\mathbf{x}} = G(\mathbf{z})$
- Discriminator
- Implicit likelihood estimation
 - Impressive results
 - Unstable training
- Only for sampling

Input

Reconstruction [7]

Motivation	
0000000	

Methodolog

Results

Conclusion

References

VAE extensions

- Complex distributions in the latent and output space [8, 9]
- Throw away the simplicity of the Gaussian likelihood estimation.

Motivation	Methodology		
0000000			

VAE extensions

- Complex distributions in the latent and output space [8, 9]
- Throw away the simplicity of the Gaussian likelihood estimation.

Motivation	Methodology		
0000000			

VAE extensions

- Complex distributions in the latent and output space [8, 9]
- Throw away the simplicity of the Gaussian likelihood estimation.

Motivation	Methodology		
0000000			

Our method

- Hierarchical approach
- Image generation in tractable steps
- Penalize errors in high-frequency images

Our method

- Hierarchical approach
- Image generation in tractable steps
- · Penalize errors in high-frequency images

Ours

Motivation	Methodology	
0000000		

Our method

- Hierarchical approach
- Image generation in tractable steps
- Penalize errors in high-frequency images

Motivation	Methodology	Results	Conclusions	References
000000				

Coarse reconstruction

Motivation	Methodology		
000000			

Motivation	Methodology	Results	Conclusions	References
0000000				

Edited

Motivation	Methodology		
000000			

$$p(\mathbf{x} | \mathbf{z}; \boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\sigma} \mathbf{I})$$

 $\mathsf{D}(\mathbf{z}) = \{\boldsymbol{\mu}, \boldsymbol{\sigma}\}$

Methodology		
0000		

$$\begin{split} p(\mathbf{x} \,|\, \mathbf{z}; \boldsymbol{\theta}) &= \mathcal{N}\big(\, \boldsymbol{\mu}, \boldsymbol{\sigma} \, \mathbf{I}\,\big) \\ q(\mathbf{z} \,|\, \mathbf{x}; \boldsymbol{\phi}) &= \mathcal{N}\big(\, \boldsymbol{\rho}, \boldsymbol{\omega} \, \mathbf{I}\,\big) \\ \mathsf{D}(\mathbf{z}) &= \{\boldsymbol{\mu}, \boldsymbol{\sigma}\}, \ \mathsf{E}(\mathbf{x}) = \{\boldsymbol{\rho}, \boldsymbol{\omega}\} \end{split}$$

Methodology ●000 Results 0000000 Conclusions

References

$$\begin{split} p(\mathbf{x} \,|\, \mathbf{z}; \boldsymbol{\theta}) &= \mathcal{N}\big(\, \boldsymbol{\mu}, \boldsymbol{\sigma} \, \mathbf{I}\,\big) \\ q(\mathbf{z} \,|\, \mathbf{x}; \boldsymbol{\phi}) &= \mathcal{N}\big(\, \boldsymbol{\rho}, \boldsymbol{\omega} \, \mathbf{I}\,\big) \\ \mathsf{D}(\mathbf{z}) &= \{\boldsymbol{\mu}, \boldsymbol{\sigma}\}, \, \, \mathsf{E}(\mathbf{x}) = \{\boldsymbol{\rho}, \boldsymbol{\omega}\} \end{split}$$

Methodology		
0000		

$$\begin{split} p(\mathbf{x} \mid \mathbf{z}; \boldsymbol{\theta}) &= \mathcal{N} \big(\, \boldsymbol{\mu}, \boldsymbol{\sigma} \, \mathbf{I} \, \big) \\ q(\mathbf{z} \mid \mathbf{x}; \boldsymbol{\phi}) &= \mathcal{N} \big(\, \boldsymbol{\rho}, \boldsymbol{\omega} \, \mathbf{I} \, \big) \\ \mathsf{D}(\mathbf{z}) &= \{ \boldsymbol{\mu}, \boldsymbol{\sigma} \}, \ \mathsf{E}(\mathbf{x}) = \{ \boldsymbol{\rho}, \boldsymbol{\omega} \} \end{split}$$

$$p(\mathbf{z}) = \overbrace{\mathcal{N}(\mathbf{0}, \mathbf{I}))}^{\mathsf{Prior}}$$

Methodology ●000		

Motivation	Methodology	Conclusions	References
	0000		

Methodology		
0000		

Methodology ○●○○		

Motivation	Methodology	Results	Conclusions	References
	0000			

Motivation	Methodology		References
	0000		

Methodology		
0000		

Add high-frequency image to low-frequency image

Methodology		
0000		

Motivation	Methodology	Results	Conclusions	References
	0000			

Methodology		
0000		

Methodology 00●0		

Methodology ○○●○		

Motivation	Methodology	Reculte	Conclusions	References
	0000			

Mathedalam		
iviethodology	Conclusions	References
0000		

Motivation	Methodology	Results	Conclusions	References
	0000			

Methodology 00●0 Results

Conclusion

References

Methodology

 $L_{k} = \underbrace{-\mathbb{E}_{\mathbf{z}_{k} \sim q_{k}(\mathbf{z}_{k}|\mathbf{h}_{k}, u(\mathbf{x}_{k}); \boldsymbol{\phi}_{k})} \left[\log p_{k}(\mathbf{h}_{k}|\mathbf{z}_{k}, \mathbf{z}_{k+1}, \cdots, \mathbf{z}_{K}; \boldsymbol{\theta}_{k})\right]}_{\text{Latent space loss}} + \underbrace{\lambda_{k} D_{KL} \left[q_{k}(\mathbf{z}_{k}|\mathbf{h}_{k}, u(\mathbf{x}_{k+1}); \boldsymbol{\phi}_{k})||p(\mathbf{z}_{k})\right]}_{\lambda_{k} D_{KL} \left[q_{k}(\mathbf{z}_{k}|\mathbf{h}_{k}, u(\mathbf{x}_{k+1}); \boldsymbol{\phi}_{k})||p(\mathbf{z}_{k})\right]}$

$$p(\mathbf{z}_k) = \overbrace{\mathcal{N}\left(R_k(\boldsymbol{\mu}_{k+1};\boldsymbol{\xi}_k), S_k(\boldsymbol{\sigma}_{k+1};\boldsymbol{\omega}_k)\right)}^{\text{Prior}}, \ M_k = \overbrace{\{R_k, S_k\}}^{\text{Prior network}}$$

Methodology		
0000		

Reconstructions

Comparison of image reconstructions

	Results ●000000	

Model	Error (\sqrt{MSE})
VAE [4] 64×64	22.78 ± 4.64
VAE/GAN [8] 64×64	30.49 ± 7.32
Ours 64×64	20.60 ± 4.81
VAE [4] 128×128	20.75 ± 4.40
Ours 128×128	20.61 ± 5.15

Quantitative model comparison of image reconstructions

	Results 0●00000	

Reconstructions

Model	$\textbf{Error}~(\sqrt{\text{MSE}})$
VAE [4] 64×64	22.78 ± 4.64
VAE/GAN [8] $_{64\times64}$	30.49 ± 7.32
Ours 64×64	20.60 ± 4.81
VAE [4] 128×128	20.75 ± 4.40
Ours 128×128	20.61 ± 5.15

Model	Preference %			
	Without original			
VAE [4]	15.61 ± 8.14			
Ours	84.39 ± 8.14			

Quantitative model comparison of image reconstructions User study: evaluation of pairs of reconstructions

	Results 0●00000	

A		В
	IV	
S		T

Model	Preference %			
	Without original	With original		
VAE [4]	15.61 ± 8.14	26.30 ± 7.35		
Ours	84.39 ± 8.14	73.70 ± 7.35		

Quantitative model comparison of image reconstructions

User study: evaluation of pairs of reconstructions

	Results 0●00000	

Model	$\textbf{Error}~(\sqrt{\text{MSE}})$
VAE [4] 64×64	22.78 ± 4.64
VAE/GAN [8] 64×64	30.49 ± 7.32
Ours 64×64	20.60 ± 4.81
VAE [4] 128×128	20.75 ± 4.40
Ours 128×128	$\textbf{20.61} \pm \textbf{5.15}$

ľ	٢e	cc	on	S	tr	U	C1	0	n	

VAE

Samples from VAE and our model

References

Samples from VAE and our model

Methodolog 0000 Results 0000000 Conclusions

References

Sampling

Motivation	Methodology	Results	Conclusions	References
		000000		

Sampling

Mativation	Mathadalam	Populto	Conclusions	Poforoncoc
	wiethodology	Nesuits		
		0000000		

Sampling

Methodology	Results	
	0000000	

Coarse base Samples

Motivation	Methodology	Results	Conclusions	References
		0000000		

Sampling with $\mathbf{z}_{k\cdots K}$ fixed at different levels of the pyramid

Motivation	Methodology	Results	Conclusions	References
		0000000		

Sampling with $\mathbf{z}_{k\cdots K}$ fixed at different levels of the pyramid

Methodology	Results	
	0000000	

References

Input

Laplacian pyramid of input

Methodology	Results	
	0000000	

Reconstructed

Reconstruct input

	D 11		
	Results	Conclusions	
0000000	0000000		

Reconstructed

Select coarse level

Motivation	Methodology	Results	Conclusions	References
		0000000		

Paint coarse level

Motivation	Methodology	Results	Conclusions	References
		0000000		

Sample from painted coarse image

	Results 00000●0	

Blend samples

	Results 00000●0	

References

Blend samples

	Results 00000●0	

Editing: more examples

Add lipstick and adjust eyebrows

	Results	
	000000	

Conclusions

- Presented a conditional multi-scale extension of VAE
- Reconstructions and samples are sharper than VAE
- Model allows partial sampling

Limitations and extensions

- Greedy learning
 - End-to-end training strategies
- Gaussian likelihood
 - Complex distributions: perceptual loss or PixelCNN layers

	Conclusions		
	00		

Thank you

Questions?

Motivation 0000000 Methodolog 0000 Results

Conclusion:

References

References

- Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.
- [2] Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak Lee. Attribute2image: Conditional image generation from visual attributes. Proceedings of European Conference on Computer Vision (ECCV), 2016.
- [3] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A. Efros. Generative visual manipulation on the natural image manifold. In Proceedings of European Conference on Computer Vision (ECCV), 2016.
- [4] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. International Conference on Learning Representations, 2014.
- [5] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in deep generative models. ICML, 2014.
- [6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems, pages 2672–2680, 2014.
- [7] David Berthelot, Tom Schumm, and Luke Metz. Began: Boundary equilibrium generative adversarial networks. CoRR, 2017.
- [8] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, and Ole Winther. Autoencoding beyond pixels using a learned similarity metric. In Proceedings of The 33rd International Conference on Machine Learning, volume 48, pages 1558–1566. JMLR, 2016.
- [9] Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed, Adrien Ali Taiga, Francesco Visin, David Vazquez, and Aaron Courville. PixelVAE: A Latent Variable Model for Natural Images. In International Conference on Learning Representations (ICLR), 2017.

Methodology		References	
		•	