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Generative models

Sampling and editing with generative models [1, 2, 3]
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Generative models

x̂ Sample

z Latent vector

θ Model parameters

G(z;θ) Generative function

p(z) Simple known distribution
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VAE

D

E

D

Sample

Reconstruction

Variational Autoencoders [4, 5]

• Encoder z ∼ E(x)

• Decoder x̂ ∼ D(z)

• Gaussian likelihood estimation
• Easy to train
• Generate blurry images
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GAN

Sample

Generative Adversarial Networks [6]

• Generator x̂ = G(z)

• Discriminator

• Implicit likelihood estimation
• Impressive results
• Unstable training

• Only for sampling
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GAN

Sample

Generative Adversarial Networks [6]

• Generator x̂ = G(z)

• Discriminator

• Implicit likelihood estimation
• Impressive results
• Unstable training

• Only for sampling

Input Reconstruction [7]
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Related work

VAE extensions

• Complex distributions in the latent and output space [8, 9]

• Throw away the simplicity of the Gaussian likelihood estimation.

Input
Reconstructions

VAE [4] VAE/GAN [8] PixelVAE [9]
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Our method

• Hierarchical approach

• Image generation in tractable steps

• Penalize errors in high-frequency images

VAE [4] Ours
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Our method: applications

Image editing using the coarse-to-fine model structure

Reconstruction
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Our method: applications

Image editing using the coarse-to-fine model structure

Reconstruction Coarse reconstruction
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Our method: applications

Image editing using the coarse-to-fine model structure

Reconstruction Coarse painted
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Our method: applications

Image editing using the coarse-to-fine model structure

Reconstruction Coarse painted Edited
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Background: VAE [4, 5]

D

E

D

p(x | z;θ) = N
(
µ,σ I

)
D(z) = {µ,σ}
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Background: VAE [4, 5]

D

E

D

p(x | z;θ) = N
(
µ,σ I

)
q(z |x;φ) = N

(
ρ,ω I

)
D(z) = {µ,σ}, E(x) = {ρ,ω}

L =

Reconstruction loss︷ ︸︸ ︷
−Ez∼q(z|x;φ) [log p(x|z;θ)] +

Latent space loss︷ ︸︸ ︷
DKL [q(z|x;φ)||p(z)]
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Background: VAE [4, 5]

D

E

D

p(x | z;θ) = N
(
µ,σ I

)
q(z |x;φ) = N

(
ρ,ω I

)
D(z) = {µ,σ}, E(x) = {ρ,ω}

L =

Reconstruction loss︷ ︸︸ ︷
−Ez∼q(z|x;φ) [log p(x|z;θ)] +

Latent space loss︷ ︸︸ ︷
DKL [q(z|x;φ)||p(z)]

p(z) =

Prior︷ ︸︸ ︷
N (0, I))
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Methodology: Sampling
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Methodology: Sampling
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Methodology: Learning
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Methodology: Learning
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Methodology: Learning
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Methodology: Learning

z1

0E

D

z0

1E

D

2

2

E

D

z

10 2

Motivation Methodology Results Conclusions References



Methodology

Input image High frequency Low frequency

= +

xk hk u(xk+1)

Lk =

Reconstruction loss︷ ︸︸ ︷
−Ezk∼qk(zk|hk,u(xk);φk)

[log pk(hk|zk, zk+1, · · · , zK ;θk)] +

Latent space loss︷ ︸︸ ︷
λkDKL [qk(zk|hk, u(xk+1);φk)||p(zk)]

p(zk) =

Prior︷ ︸︸ ︷
N
(
Rk(µk+1; ξk), Sk(σk+1;ωk)

)
, Mk =

Prior network︷ ︸︸ ︷
{Rk, Sk}
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Reconstructions

Input 128x128 VAE 128x128 Ours 128x128 VAE/GAN 64x64 PixelVAE 64x64

Comparison of image reconstructions
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Reconstructions

Model Error (
√

MSE)

VAE [4] 64×64 22.78± 4.64

VAE/GAN [8] 64×64 30.49± 7.32

Ours 64×64 20.60± 4.81

VAE [4] 128×128 20.75± 4.40

Ours 128×128 20.61± 5.15

Quantitative model compar-
ison of image reconstructions
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Reconstructions

Model Error (
√

MSE)

VAE [4] 64×64 22.78± 4.64
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Ours 64×64 20.60± 4.81

VAE [4] 128×128 20.75± 4.40
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Quantitative model compar-
ison of image reconstructions

A B

Model
Preference %

Without
original

VAE [4] 15.61± 8.14

Ours 84.39± 8.14

User study: evaluation of pairs of re-
constructions
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Reconstructions

Model Error (
√

MSE)

VAE [4] 64×64 22.78± 4.64

VAE/GAN [8] 64×64 30.49± 7.32

Ours 64×64 20.60± 4.81

VAE [4] 128×128 20.75± 4.40

Ours 128×128 20.61± 5.15

Quantitative model compar-
ison of image reconstructions

A B

Model
Preference %

Without With
original original

VAE [4] 15.61± 8.14 26.30± 7.35

Ours 84.39± 8.14 73.70± 7.35

User study: evaluation of pairs of re-
constructions
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Samples

VAE

Samples from VAE and our model

Motivation Methodology Results Conclusions References



Samples

VAE

Ours

Samples from VAE and our model
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Sampling
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Samples

Coarse base Samples

Sampling with zk···K fixed at different levels of the pyramid
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Coarse base Samples

Sampling with zk···K fixed at different levels of the pyramid
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Samples

Coarse base Samples

Sampling with zk···K fixed at different levels of the pyramid
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Editing: removing glasses

Input

Laplacian pyramid of input
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Editing: removing glasses

Input Reconstructed

Reconstruct input
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Editing: removing glasses

Input Coarse Input Reconstructed

Coarse
input

Select coarse level
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Editing: removing glasses

Input Coarse Input Painted Reconstructed

Paint

Paint coarse level
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Editing: removing glasses

Input Coarse Input Painted Reconstructed

Painted

Sample from painted coarse image
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Editing: removing glasses

Input Coarse Input Painted Reconstructed

Blend samples
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Editing: removing glasses

Input Coarse Input Painted Reconstructed

Select
region

Blend

Blend samples
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Editing: more examples

Input Coarse Input Painted Reconstructed Input Coarse Input Selection Reconstructed

Add lipstick and adjust eyebrows
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Conclusions

Conclusions

• Presented a conditional multi-scale extension of VAE

• Reconstructions and samples are sharper than VAE

• Model allows partial sampling

Limitations and extensions

• Greedy learning
• End-to-end training strategies

• Gaussian likelihood
• Complex distributions: perceptual loss or PixelCNN layers
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Conclusions

Thank you

Questions?
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