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Figure 1: Image editing example. (a) An input image is decomposed using a Laplacian pyramid. The user paints
into the coarse image. The input image is projected to a low-dimensional representation and reconstructed
from it. (b) Several samples are generated conditioned on the painted coarse image. (c) The regions of interest
in (b) are composed with the reconstructed image.

ABSTRACT

Variational Autoencoders (VAE) learn a latent representation
of image data that allows natural image generation and ma-
nipulation. However, they struggle to generate sharp images.
To address this problem, we propose a hierarchy of VAEs anal-
ogous to a Laplacian pyramid. Each network models a single
pyramid level, and is conditioned on the coarser levels. The
Laplacian architecture allows for novel image editing appli-
cations that take advantage of the coarse to fine structure of
the model. Our method achieves lower reconstruction error
in terms of MSE, which is the loss function of the VAE and
is not directly minimised in our model. Furthermore, the re-
constructions generated by the proposed model are preferred
over those from the VAE by human evaluators.
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1 INTRODUCTION

General purpose image editing packages such as Adobe Pho-
toshop and Gimp rely on simple image models which have no
knowledge of the objects in the scene. Accordingly, extensive
knowledge is needed by the user to successfully execute any
non-trivial modification. To create more intuitive editing tools,
we need more powerful image models. In this paper we develop
a model that contains detailed knowledge of faces.

Intuitive editing controls allow manipulation of latent at-
tributes. To model such attributes, we assume that the face
image data lies on a low-dimensional manifold embedded in a
high-dimensional space. By generating new images such that
they lie on the manifold, any point will result in a realistic im-
age. Thus, editing becomes a navigation task in the manifold.

Deep Convolutional Neural Networks (DNN) have recently
shown state-of-the-art results in image editing [20, 23] andman-
ifold learning [10]. Autoencoders [3] are trained to learn a non-
linear projection of the image data into a low-dimensional la-
tent space. Images can edited bymanipulating their representa-
tion in the latent space then re-projecting back to image space.
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Unfortunately Autoencoder models for image editing have
two major drawbacks. First, the generated images tend to be
over-smoothed. This effect is especially noticeable in DNNs
that use mean squared error metrics which do not correspond
to human perception [12, 13]. For example, if an image with
high frequency detail is translated by one pixel it can have
a large error, but a human might not be able to perceive the
difference. Second, scaling these methods to high-resolution
images has proven challenging, not least because the number
of parameters becomes very large.

We address these problems with the Laplacian Pyramid of
Conditional Variational Autoencoders (LapCVAE). This de-
composes image generation into a hierarchy of smaller tractable
steps. We present a novel loss function that allows the latent
Gaussian distributions to have arbitrary mean and variance,
but can still be trained and sampled efficiently.We evaluate our
model on the CelebA [14] data-set. We show that our network
is able to generate compelling images, and that each level in the
hierarchy learns a useful representation, as shown in Figure 1.

2 RELATED WORK

There are two common families of deep generative architec-
tures: Variational Autoencoders (VAE) [10] and Generative
Adversarial Networks (GAN) [7].

Autoencoders [3] learn an encoder that transforms the im-
age data into a latent low-dimensional representation, and a
decoder that learns the inverse transformation. The model is
trained tominimize reconstruction error between the input and
decoder output. In the Variational Autoencoder (VAE) [10],
the latent space is encouraged to have a hyperspherical struc-
ture. Learning the parameters is made tractable by employing
a variational approximation for the marginal likelihood of the
data. The main drawback of VAEs is that they tend to pro-
duce blurry outputs [13, 21]. Some hypothesis for this behavior
include, the use of an 𝐿2 loss for the reconstruction error [12],
and the assignment of high probability to points not present in
the training dataset, in an attempt to generalize when multiple
modes are present [6].

Generative Adversarial Networks (GAN) pose image gener-
ation as a minmax game, where a generator network is trained
to transform vectors of random noise into samples from the
input data distribution, and a discriminator network is trained
to distinguish between the real data and the samples. Thus, the
vector of noise becomes a latent low-dimensional representa-
tion of the training data. GANmodels are hard to train [17, 19],
as the discriminator tends to converge faster than the genera-
tor, and they are prone to oscillating behavior. There have been
attempts to stabilize the training procedure [17, 19]. Since
GAN are only concerned with the generation of plausible out-
puts, they cope well with data with multiple modes. They can
disregard less common modes in order to capture the remain-
ing ones [19]. They typically generate sharper results than the
VAE, though training the latter is more straightforward [6].
Hybrid schemes that combine GANs and VAEs have also been
proposed [2, 13].

Both of these architectures have been extended using coarse
to fine approaches: Zhang et al. [22] divide the GAN archi-
tecture into two resolutions. Kolesnikov et al. [11] develop a
method based on explicit low to high resolution generation, and
Denton et al. [4] build a Laplacian pyramid of GANs. The Pixel-
VAE model [8], extends VAEs by adding PixelCNN [15] layers
after the decoder to be able to model very local texture details.

These networks produce latent spaces where the dimensions
do notmap to human-interpretable variations in the output im-
ages. In image editing, it is more intuitive tomanipulate seman-
tic attributes. Indeed, a supervised approach to conditioning
the output has proved to increase the quality of the results [13,
21]. Conditional GAN [5] add a feature vector, which encodes
class labels. A similar approach has been taken for VAEs [21].
Reed at al. [18] included position and orientation aswell as class
attributes, which are encoded together in a feature vector to
control the location and characteristics of the object. However
these methods require the conditioning vector to be provided
as an input, which makes their general use less practical.

In general, GAN-based approaches are able to produce re-
sults of higher quality that VAE-based techniques [6, 13, 21].
However, as shown in Figures 1 and 9 begin able to recon-
struct and sample new images is an integral part of our model
and its image editing applications. GAN models are designed
for sampling only, reconstructing images requires indirect
approaches, like applying costly optimization procedures or
training additional networks [23]. Additionally, GAN networks
are notoriously hard to train and are prone to drop modes
present in the training data [17, 19]. For these reasons, we
focus our attention on VAE-based techniques.

3 VARIATIONAL AUTOENCODER

We first provide a brief review of the Variational Autoencoder
(VAE) [10] before extending it to multiple resolutions in Sec-
tion 4. The VAE consists of (i) a decoder or generator model,
𝑝(x|z;𝜃), which models the probability distribution of the in-
put data x conditioned on the low-dimensional representation
z in a latent space and (ii) an encoder or recognition model,
𝑞(z|x;𝜑), which maps in the other direction. Both models are
described using deep neural networks, with parameters 𝜃 and
𝜑 respectively.

During training we estimate these parameters such that the
marginal likelihood of the training data, 𝑝(x;𝜃), is maximized
under a variational Bayesian approximation:

log[𝑝(x;𝜃)]=𝐷𝐾𝐿[𝑞(z|x;𝜑)||𝑝(z|x;𝜃)]+𝐿𝑉 𝐴𝐸 , (1)

where the variational lower bound is

𝐿𝑉 𝐴𝐸=E𝑞(z|x;𝜑)[log 𝑝(x|z;𝜃)]−𝐷𝐾𝐿[𝑞(z|x;𝜑)||𝑝(z;𝜃)]. (2)

In Eq. 1, the left-hand side denotes the log likelihood of the
data, and the first term on the right-hand side measures the
distance between the approximate encoding distribution and
the true posterior. In the variational lower bound, the first term
is the reconstruction error (the log probability distribution
of the decoder given 𝑞(z|x;𝜑)), and the second term is the
divergence between the encoder distribution and a known prior.
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Figure 2: LapCVAE architecture for sample generation. A point in latent space z𝑘+1 is sampled from a normal
distribution and decoded to generate a coarse image. The image is encoded (dashed cyan arrows) to compute its
particular latent mean 𝜇𝑘+1 and variance 𝜎𝑘+1, and a network 𝑀𝑘 is used to estimate the mean 𝜇̃𝑘 and variance
𝜎̃𝑘 for the finer level. A new point in latent space z𝑘 is sampled and the high-frequency image is generated
conditioned (dotted yellow arrow) on z𝑘+1. This is added to the upsampled (green arrow) coarse image. The
process is repeated until the final result is generated.

The assumption is that the recognition model 𝑞(z|x;𝜑) will
be a good approximation of the intractable posterior 𝑝(z|x;𝜃),
therefore making the intractable non-negative KL divergence
in Eq. 1 approach zero. Thus, maximizing the bound will be ap-
proximately equivalent to maximizing the marginal likelihood
of the data 𝑝(x;𝜃) under the model.

To facilitate computation of the gradients during training,
the approximate posterior is defined by a diagonal Gaussian,
with mean and variance as a function of the input data

𝑞(z|x;𝜑)=𝒩 (𝜇(x),𝜎2(x)I). (3)

The addition of the auxiliary noise vector 𝜖 is known as the
“reparameterization trick” [10], and it allows the sampling of
z to be differentiable

z=𝜇(x)+𝜎(x)⊙𝜖, (4)

where 𝜇 and 𝜎 are functions of x, 𝜖∼𝒩 (0,I) is an auxiliary
random noise vector and ⊙ denotes element wise product.

The choice of prior for 𝑝(z) is a Gaussian distribution with
zero mean and unit variance

𝑝(z;𝜃)=𝒩 (0,I). (5)

This straightforward prior is used because it simplifies the
KL divergence term in the right-hand side of equation 2 to∑︀𝐽

𝑗 (1+log(𝜎2
𝑗 )−𝜇2

𝑗−𝜎2
𝑗 ), where 𝐽 is the dimensionality of z.

4 LAPLACIAN
VARIATIONAL AUTOENCODER

In this section we present our model, the Laplacian Condi-
tional Variational Autoencoder (LapCVAE). Similarly to the
LAPGAN [4] model, the image is generated in a coarse-to-fine
manner by treating it as a Laplacian pyramid. At each stage
the network only generates details at a specific scale that are
added to an upsampled estimate of the image given by the
preceeding levels. In this model, the loss function explicitly
penalizes errors in generating the high frequency images rather
than the overall image reconstruction. The model architecture
during generation and training for a pyramid with three levels
is shown in Figures 2 and 3.

A Laplacian pyramid is an invertible image decomposition,
describing an image as a set of images which encode high-
frequency details at different scales. To generate a𝐾 level pyra-
mid, a blur and downsample operator 𝑑(·) is repeatedly applied
to the input image x to create blurred images [b0,b1,···b𝐾 ],
withb0=x. The imageh𝑘 at level 𝑘 of the Laplacian pyramid is
computed as the difference between the blurred image at level 𝑘
and an upsampled version of the blurred image at the next level

h𝑘=b𝑘−𝑢(b𝑘+1), (6)

where 𝑢(·) is an upsample operator, and the residual is used
for the last level, h𝐾 =b𝐾 . To reconstruct an image x from
its Laplacian pyramid we recursively apply

x𝑘=h𝑘+𝑢(x𝑘+1), (7)
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Figure 3: LapCVAE architecture during training. An image is decomposed (red arrows) into its high-frequency
and low frequency components. The low-frequency is downsampled (gray arrows). Each VAE learns how to
generate the high-frequency ground truth image that receives as input (blue arrows). The encoder also receives
as input the composed image generated from the previous levels (dotted orange arrows). The generated image
is re-encoded to compute the means and variances for the 𝑀𝑘 networks.

where the recursion starts with x𝐾 =h𝐾 and ends with x=x0.
In our model, a series of VAEs are used to generate the

images in the Laplacian pyramid

h𝑘∼𝑝𝑘(h𝑘|z𝑘;𝜃𝑘), (8)

where 𝑝𝑘(·) is the decoder of the 𝑘𝑡ℎ VAE, z𝑘 is an encod-
ing for the high frequency image h𝑘, and 𝜃𝑘 denotes the de-
coder parameters. For each decoder, a corresponding encoder,
z𝑘∼𝑞𝑘(z𝑘|h𝑘;𝜑𝑘), is defined as part of the VAE.

4.1 Conditioning

To ensure the generated images are coherent across scales,
both the encoder and the decoder must be conditioned with
the result from the previous level

z𝑘∼𝑞𝑘(z𝑘|h𝑘,𝑢(x𝑘+1);𝜑𝑘), (9)

h𝑘∼𝑝𝑘(h𝑘|z𝑘,𝑢(x𝑘+1);𝜃𝑘). (10)

This formulation conditions the generative process on the
previous scale via the upsampled image 𝑢(x𝑘+1), but a supe-
rior approach for the decoder is to condition the generation
on all of the previous latent variables

h𝑘∼𝑝𝑘(h𝑘|z𝑘,z𝑘+1,···,z𝐾 ;𝜃𝑘). (11)

In our model the encoder only receives the images h𝑘 and
𝑢(x𝑘+1), which are concatenated along the channel dimension,

and the resulting tensor is used as input for the 𝑘𝑡ℎ network,
as shown by the orange arrow in Figure 3. The decoder in-
puts consist of latent vectors, z𝑘,z𝑘+1,···,z𝐾 , which are also
concatenated, as shown by the yellow arrow in Figure 3.

4.2 Loss function

The loss function for each VAE in the pyramid is defined as:

𝐿=E𝑞𝑘(z𝑘|h𝑘,𝑢(x𝑘);𝜑𝑘)
[log 𝑝𝑘(h𝑘|z𝑘,z𝑘+1,···,z𝐾 ;𝜃𝑘)]−

𝜆𝑘𝐷𝐾𝐿[𝑞𝑘(z𝑘|h𝑘,𝑢(x𝑘+1);𝜑𝑘)||𝑝(z𝑘;𝜃𝑘)], (12)

where 𝜆𝑘 is a scalar hyper-parameter that serves as a tradeoff
between the reconstruction loss and the distance from the
encoding prior. For the reconstruction losswemeasure the error
between the input Laplacian pyramid images, and the ones
generated by the network, as shown in black arrows in Figure 3.

4.3 Latent space prior distribution

Hoffman and Johnson [9] discussed the need for better priors
in VAE networks. Taking advangate of our pyramid architec-
ture, we propose a novel Gaussian prior. In similar spirit as
Gulrajani et al. [8], our prior encourages the latent space of a
given level to be a transformation of the coarser level’s latent
distribution. The prior distribution for our model is defined as

𝑝(z𝑘;𝜃𝑘)=𝒩
(︀
𝑅𝑘(𝜇𝑘+1;𝜉𝑘),𝑆𝑘(𝜎𝑘+1;𝜔𝑘)

)︀
, (13)
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where 𝜇𝑘+1 and 𝜎𝑘+1 are the mean and standard deviation
of the latent point in the coarser level as in eq. 4, 𝑅𝑘(·) and
𝑆𝑘(·) are a family of transformation functions parametrized
by 𝜉𝑘 and 𝜔𝑘.

For the coarsest level in the pyramid the standard VAE
prior defined in equation 5 is used. For simplicity, we will use
𝑀𝑘(·) to denote the pair of functions 𝑅𝑘(·) and 𝑆𝑘(·).

To ensure equivalent distributions at train time (where the
original image is available) and test time (where it is not),
𝜇𝑘+1 and 𝜎𝑘+1 are given by encoding the reconstructed image
from 𝑝𝑘+1(·) with 𝑞𝑘+1(·).

Using the parameters defined by𝑀𝑘 gives more flexibility to
the latent space distribution in the finer levels of the pyramid.
As the means and variances of the Gaussian distribution are
image dependent, the distribution of the latent space can be
regarded as an mixture of Gaussians.

We approximate the 𝑀𝑘 functions using shallow multilayer
perceptron networks. The parameters 𝜉𝑘 and𝜔𝑘 can be jointly
learned with minimal overhead during training, by minimizing
equation 12.

5 RESULTS

We evaluated two versions of our model on the CelebA [14]
dataset, using 64×64 and 128×128 images taken from the
aligned and cropped version of the dataset. The dataset con-
sists of 202,599 images of faces, we use 80% of the images for
training and 20% for testing. We trained two models, with four
Laplacian levels for the 64×64 and with five for the 128×128,
where each downsampling operator halves the image size, i.e.
for the 64×64 version the input size for each VAE is 64×64,
32×32, 16×16 and 8×8 pixels.

The mean squared error (MSE) between pixels was used as
the reconstruction cost in the loss function. The size of the
latent space for each level of the pyramid is set to 64 for the
64× 64 network, and nz = [128,128,64,64,64] for the larger
model. I.e. the small model has a combined dimensionality for
the latent space of 256, and the large model of 448.

The value of 𝜆𝑘, the weight for the KL divergence term for
𝑀𝑘, acts as a trade-off between the reconstruction and the
sampling quality. We performed a greedy search starting at
the coarsest level of the pyramid for the value that would yield
reasonable samples and reconstructions. The results shown
in this section use 𝜆=[10,0.1,0.01] for the 64×64 model, and
𝜆=[100,100,0.1,0.01] for the 128×128.

The model was implemented in Tensorflow [1] and trained
on a single Nvidia Titan X. The whole pyramid model takes
approximately 8 hours to train for the 64×64 model and 14
for the 128×128. For more details on the network architecture
please refer to the supplementary material.

5.1 Comparison with related work

We compare our model in terms of image quality and com-
plexity to VAE [10], VAE/GAN [13] and PixelVAE [8]. The
PixelVAE model extends VAEs by adding PixelCNN layers
after the decoder. We use the two level version of the model.
VAE/GAN is a hybrid of VAE and GAN, which consists of

Input 128

VAE

VAE/GAN

PixelVAE

Ours

VAE 128

Ours 128

Figure 4: Comparison of image reconstruction results
for different AutoEncoder architectures on the test
data. VAE/GAN and PixelVAE add additional de-
tails in the images that do not necessarily correspond
to the input. Our architecture produces sharper
images than VAE. This is more noticeable in the last
two rows that show results for the 128×128 models.

an encoder, decoder and a discriminator. The authors replace
the L2 reconstruction loss, with a loss in feature space and an
adversarial loss. For PixelVAE and VAE/GAN we trained the
models using the code provided by the authors without any
modifications to the architecture. The VAE were trained with
the same latent space dimensionality and similar number of
parameters as our models.

5.1.1 Reconstructions. Examples of reconstructions are
shown in Figure 4. VAE reconstructions are blurrier than the
other methods, but are able to capture the main features in
the faces. PixelVAE and VAE/GAN produce sharper results,
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Model Reconstruction
error

Network
parameters

VAE [10] 22.78±4.64* 6.58×107

VAE/GAN [13] 30.49±7.32* 4.69×107

LapCVAE
Without-M

22.19±4.80 6.54×107

LapCVAE 20.60±4.81 6.55×107

VAE [10] 128×128 20.75±4.40* 1.68×108

LapCVAE
128×128

20.61±5.15 1.66×108

Table 1: Quantitative comparison of model com-
plexity and reconstruction error, measured as the
mean of the square root of the MSE with standard
deviation. Models trained with this error metric are
denoted by a * next to their error value.

however the added detail does not necessarily correspond with
the input images. For PixelVAE this is due to the local nature
of the autoregressive PixelCNN layers, and in VAE/GAN due
to the inclusion of the adversarial loss. Our model is able to
produce sharper images in comparison to VAE.

Quantitative results are presented in Table 1, measured as
the mean and the standard deviation of the square root of
the MSE over all images, with pixels in the range [0,255]. The
network complexity is measured in floating point operations.
We do not provide a mean reconstruction error for PixelVAE,
given how costly it is to generate images with this method,
around 40 minutes for a batch of 64 images. LapCVAE both
with and without the 𝑀 functions are able to reconstruct
images with lower error than VAE and VAE/GAN.

At the 64×64 resolution the effects of using the Laplacian
architecture instead of a VAE are rather subtle. However, the
advantages of using our model becomes more evident as the
resolution increases. The PixelVAE and VAE/GAN were de-
signed by the authors to only handle 64×64 images, and due to
GPU RAM constrains and need of parameter tuning we were
unable to extend them to 128×128. Our model is less effective
at representing the colors in the images, yet it is able to better
capture sharp features and small details. For example, note
in the first row of Figure 4 how the gaze and mouth are better
reproduced by our model.

5.1.2 Human evaluation of reconstructions. To further demon-
strate the advantages of our method, we perform a small user
study to evaluate the perceptual quality of the reconstructed
images. We compare 128×128 reconstructions of VAE and
LapCVAE.We performed two different experiments where four
participants evaluated 500 images each. In the first experiment,
the participants were presented with the reconstructions of the
same image by both methods and had to choose the one with
the highest quality. In the second experiment, the participants

Model
Human preference %

Without original With original

VAE [10] 128×128 15.61±8.14 26.30±7.35

LapCVAE 128×128 84.39±8.14 73.70±7.35

Table 2: Human evaluation of pairs of reconstruc-
tions from VAE and our model, with and without the
input image. Images generated with our model are
preferred over the competing method.

VAE

LapCVAE

Figure 5: The samples from our model and VAE
on the 128 × 128 architecture. The samples from
LapCVAE appear to be as varied and with similar
quality as the ones from VAE.

were presented with the reconstructions together with the orig-
inal image and were asked to choose the reconstruction that
better matched the original. For both experiments the order
in which the two reconstructions were shown was randomized.

For both experiments our reconstructions were preferred
over the competing method by a large margin, as shown in
Table 2. These results seem to indicate that the reconstructions
obtained with our method, despite being similar in terms of
reconstruction error (see Table 1), are superior to the recon-
structions obtained with VAE. The added detail and sharpness
visible in our reconstructions is important in human perception
of image quality.

5.1.3 Samples. Some samples from our model are shown
in Figure 5. The main features of the face are seen clearly, yet
the background and hair are noticeably blurry. The samples
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Sample Neighbors

Figure 6: Samples from our 128 × 128 method with
nearest neighbors in the training data, which show
that the model is not simply memorizing the images
in the dataset.

LapCVAE

LapCVAE

Retrain

M

Figure 7: Sample comparison with our 128×128 model
and retraining M after convergence. After retraining
the generated images are sharper and contain less
artifacts.

present some variety of pose and style, and they appear to be
similar in terms of quality to VAE samples.

Base Samples

Figure 8: Sampling with z𝑘···𝐾 fixed at different levels
of the pyramid with the 128× 128 model. The Base
columns contain the blurred and upsampled image
generated by the fixed levels, and the remaining
images are generated by sampling different latent
vectors at the rest of the levels z0···𝑘−1. As expected
the samples are consistent with the coarse base and
the variety decreases as more levels are fixed.

In order to test that the network did not overfit, the nearest
neighbours in the training set for a number of samples are
shown in Figure 6. The similarity between the samples and
the training data is measured in pixel space using the mean
squared error. The samples are distinct from their neighbors,
which demonstrates that the model is not just memorizing the
training images.

Our pyramid architecture explicitly encodes coarse to fine
information in the latent representation learned by the model.
This effect is shown in Figure 8, where the 𝑧 for the coarser
levels are fixed, and a number of images are produced by sam-
pling the remaining levels. Less variation in the samples is
observed as more levels are fixed.

During training the loss function contains two terms, the
reconstruction and the KL divergence, which are potentially
conflicting. After convergence, the sample quality can be im-
proved by retraining the 𝑀 networks (see Section 4.3), while
keeping the rest of the model fixed. A comparison of samples
generated before and after retraining 𝑀 is shown in Figure 7.
Some improvements, such as extra sharpness or smoother color
transitions can be noticed in the retrained examples. The sam-
ples generated for any other figure in the paper were generated
without retraining 𝑀 .
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Input Coarse Input Selection Reconstructed Input Coarse Input Selection Reconstructed

(a)

(b)

(c)

Figure 9: Image editing example. (a) An input image is decomposed using a Laplacian pyramid. The user selects
an area to be edited. The input image is projected to a low-dimensional representation and reconstructed from
it. (b) Several samples are generated conditioned on the coarse input creating interesting variations. (c) The
selected regions from the samples are composed with the reconstructed image.

5.2 Image editing

Our method allows partial sampling, where the coarser levels
of the pyramid are kept fixed and the finer levels are sampled,
as shown in Figure 8. This enables novel image editing applica-
tions that are not possible with VAE. Image editing examples
using our 128×128 model are shown in Figures 9 and 1.

For an input image, the user can select a region to be modi-
fied (Figure 9) or edit the coarse level image directly (Figure 1).
From a coarse input, a number of novel images are sampled
from the network, providing a large variety of compatible re-
sults. The final image can the be composited back [16] easily
as the generated images are, by construction. compatible with
the input, i.e.the patch is already mostly aligned and it has
similar colors.

For example, in Figure 1 right, our method is used to remove
the sunglasses from input image . On the coarse level, the area
around the eyes is painted with skin tone, and several samples
of faces without sunglasses are generated from it. The region
of interested is then composited with the reconstructed image.

6 CONCLUSIONS
AND FUTURE WORK

In this paper we presented Laplacian Pyramid of Conditional
Variational Autoencoder (LapCVAE), a conditional multi-
scale extension of Variational Autoencoder (VAE) models.
Our generative network is able to produce reconstructions and
samples, which are sharper than VAE results and at higher
resolution than alternative methods. It can be trained in a
greedy fashion and it provides more flexibility, as it allows
partial sampling of only some of the levels of the pyramid.

In terms of limitations, the images produced by our network
lack some of the overall colors that a VAE of similar complexity

is able to capture. Moreover, the total training time is doubled
if the greedy training procedure is used, and the image gener-
ation is less efficient as there are several levels to sample from.

There are a number of opportunities for future work. Our
method still fails to capture local high frequency detail. To
overcome this limitation, a PixelCNN network could be added
after each VAE in the pyramid, in a similar fashion as Gulra-
jani et al. [8]. A different approach to improve the quality of
the generated images is to use a perceptual or adversarial loss
for the reconstruction error, analogous to the work in Larsen et
al. [13]. The effects of using our latent space loss could benefit
from a formal mathematical study.
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